Silva Romualdo S, Rodrigues João E, Rosa Angelika D, Gainza Javier, Céspedes Eva, Nemes Norbert M, Martínez José L, Alonso José A
Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, E-28049 Madrid, Spain.
European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France.
ACS Appl Mater Interfaces. 2023 Nov 1;15(43):50290-50301. doi: 10.1021/acsami.3c12571. Epub 2023 Oct 20.
Transition-metal chalcogenides with intercalated layered structures are interesting systems in material physics due to their attractive electronic and magnetic properties, with applications in the fields of magnetic refrigerators, catalysts, and thermoelectrics, among others. In this work, we studied in detail the structural, electronic, and magnetic properties of (Fe,Ti)-based sulfides with formula FeTiS ( = 0.24, 0.32, and 0.42), prepared as polycrystalline materials under high-pressure conditions. They present a layered Heideite-type crystal structure, as assessed by synchrotron X-ray diffraction. A local structure analysis using Fe -edge extended X-ray-absorption fine structure (EXAFS) data unveiled a conspicuous contraction of the main Fe-S bond in FeTiS at the vicinity of the magnetic transition 60-80 K. We suggest that this anomaly is related to magnetoelastic coupling effects. The EXAFS analysis allowed extraction of the Einstein temperatures (θ), i.e., the phonon contribution to the specific heat, for the two bond pairs Fe-S [θ ≈318 K; 290 K (/)] and Fe-Ti [θ ≈218 K; 190 K (/)]. In addition to the structural and local vibrational measurements, we probed the magnetic properties using magneto-calorimetry, magnetometry under applied pressure, magnetoresistance (MR), and Hall effect measurements. We observed the appearance of a broad peak in the specific heat around 120 K in the = 0.42 compound that we associated with an antiferromagnetic ordering electronic transition. We found that the antiferromagnetic transition temperature is pressure and composition sensitive and reduces at 1.2 GPa by ∼12 and ∼3 K, for the members with = 0.24 and = 0.42, respectively. Similarly, the saturation magnetization in the ordered phase depends on both pressure and iron content, reducing its value by 50, 90, and 30% for = 0.24, 0.32, and 0.42, respectively. We observed clear jumps in the magnetic hysteresis loops, MR, and anomalous Hall effect (AHE) below 2 K at fields around 2-4 T. We associated this observation with the metamagnetic transitions; from the Berry-curvature a decoupling parameter of = 0.12 V is determined. Comparison of the results on the temperature-dependent magnetization, MR, and AHE elucidates a strong inelastic scattering contribution to the AHE at higher temperatures due to the cluster spin-glass phase.
具有插层层状结构的过渡金属硫属化合物因其具有吸引力的电子和磁性特性,在材料物理学中是有趣的体系,在磁制冷机、催化剂和热电学等领域有应用。在这项工作中,我们详细研究了化学式为FeTiS( = 0.24、0.32和0.42)的(Fe,Ti)基硫化物的结构、电子和磁性特性,这些硫化物是在高压条件下制备的多晶材料。通过同步加速器X射线衍射评估,它们呈现出层状的黑硫铁镍矿型晶体结构。使用Fe -边扩展X射线吸收精细结构(EXAFS)数据进行的局部结构分析揭示,在60 - 80 K的磁转变附近,FeTiS中主要的Fe - S键明显收缩。我们认为这种异常与磁弹性耦合效应有关。EXAFS分析允许提取两个键对Fe - S [θ ≈318 K;290 K(/)]和Fe - Ti [θ ≈218 K;190 K(/)]的爱因斯坦温度(θ),即声子对比热的贡献。除了结构和局部振动测量外,我们还使用磁热法、施加压力下的磁测量、磁电阻(MR)和霍尔效应测量来探测磁性特性。我们在 = 0.42的化合物中观察到在120 K左右比热出现一个宽峰,我们将其与反铁磁有序电子转变相关联。我们发现反铁磁转变温度对压力和成分敏感,对于 = 0.24和 = 0.42的成员,在1.2 GPa时分别降低约12 K和3 K。同样,有序相中的饱和磁化强度取决于压力和铁含量,对于 = 0.24、0.32和0.42,其值分别降低50%、90%和30%。我们在2 - 4 T左右的磁场下,在2 K以下观察到磁滞回线、MR和反常霍尔效应(AHE)有明显跳跃。我们将这一观察结果与亚磁转变相关联;从贝里曲率确定解耦参数 = 0.12 V。对温度依赖的磁化强度、MR和AHE结果的比较表明,由于团簇自旋玻璃相,在较高温度下AHE有很强的非弹性散射贡献。