Hoffmann Christian, Ruff Kiersten M, Edu Irina A, Shinn Min Kyung, Tromm Johannes V, King Matthew R, Pant Avnika, Ausserwöger Hannes, Morgan Jennifer R, Knowles Tuomas P J, Pappu Rohit V, Milovanovic Dragomir
Laboratory of Molecular Neuroscience Berlin, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany.
Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
J Mol Biol. 2025 Apr 15;437(8):168987. doi: 10.1016/j.jmb.2025.168987. Epub 2025 Feb 11.
Multiple biomolecular condensates coexist at the pre- and post- synapse to enable vesicle dynamics and controlled neurotransmitter release in the brain. In pre-synapses, intrinsically disordered regions (IDRs) of synaptic proteins are drivers of condensation that enable clustering of synaptic vesicles (SVs). Using computational analysis, we show that the IDRs of SV proteins feature evolutionarily conserved non-random compositional biases and sequence patterns. Synapsin-1 is essential for condensation of SVs, and its C-terminal IDR has been shown to be a key driver of condensation. Focusing on this IDR, we dissected the contributions of two conserved features namely the segregation of polar and proline residues along the linear sequence, and the compositional preference for arginine over lysine. Scrambling the blocks of polar and proline residues weakens the driving forces for forming micron-scale condensates. However, the extent of clustering in subsaturated solutions remains equivalent to that of the wild-type synapsin-1. In contrast, substituting arginine with lysine significantly weakens both the driving forces for condensation and the extent of clustering in subsaturated solutions. Co-expression of the scrambled variant of synapsin-1 with synaptophysin results in a gain-of-function phenotype in cells, whereas arginine to lysine substitutions eliminate condensation in cells. We report an emergent consequence of synapsin-1 condensation, which is the generation of interphase pH gradients that is realized via differential partitioning of protons between coexisting phases. This pH gradient is likely to be directly relevant for vesicular ATPase functions and the loading of neurotransmitters. Our studies highlight how conserved IDR grammars serve as drivers of synapsin-1 condensation.
多种生物分子凝聚物共存于突触前和突触后,以实现大脑中的囊泡动力学和可控的神经递质释放。在突触前,突触蛋白的内在无序区域(IDR)是凝聚的驱动因素,可使突触小泡(SV)聚集。通过计算分析,我们表明SV蛋白的IDR具有进化上保守的非随机组成偏差和序列模式。突触素-1对SV的凝聚至关重要,其C端IDR已被证明是凝聚的关键驱动因素。聚焦于这个IDR,我们剖析了两个保守特征的贡献,即极性和脯氨酸残基沿线性序列的分离,以及精氨酸相对于赖氨酸的组成偏好。打乱极性和脯氨酸残基的区域会削弱形成微米级凝聚物的驱动力。然而,在亚饱和溶液中的聚集程度仍与野生型突触素-1相当。相比之下,用赖氨酸替代精氨酸会显著削弱凝聚的驱动力以及亚饱和溶液中的聚集程度。突触素-1的 scrambled 变体与突触囊泡蛋白共表达会在细胞中产生功能获得表型,而精氨酸到赖氨酸的替换会消除细胞中的凝聚。我们报告了突触素-1凝聚的一个新结果,即通过质子在共存相之间的差异分配实现相间pH梯度的产生。这种pH梯度可能与囊泡ATP酶功能和神经递质的装载直接相关。我们的研究强调了保守的IDR语法如何作为突触素-1凝聚的驱动因素。