Suppr超能文献

一种用于 COVID-19 预测的新型双向 LSTM 深度学习方法。

A novel bidirectional LSTM deep learning approach for COVID-19 forecasting.

机构信息

Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, Singapore, 119615, Singapore.

Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.

出版信息

Sci Rep. 2023 Oct 20;13(1):17953. doi: 10.1038/s41598-023-44924-8.

Abstract

COVID-19 has resulted in significant morbidity and mortality globally. We develop a model that uses data from thirty days before a fixed time point to forecast the daily number of new COVID-19 cases fourteen days later in the early stages of the pandemic. Various time-dependent factors including the number of daily confirmed cases, reproduction number, policy measures, mobility and flight numbers were collected. A deep-learning model using Bidirectional Long-Short Term Memory (Bi-LSTM) architecture was trained on data from 22nd Jan 2020 to 8 Jan 2021 to forecast the new daily number of COVID-19 cases 14 days in advance across 190 countries, from 9 to 31 Jan 2021. A second model with fewer variables but similar architecture was developed. Results were summarised by mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and total absolute percentage error and compared against results from a classical ARIMA model. Median MAE was 157 daily cases (IQR: 26-666) under the first model, and 150 (IQR: 26-716) under the second. Countries with more accurate forecasts had more daily cases and experienced more waves of COVID-19 infections. Among countries with over 10,000 cases over the prediction period, median total absolute percentage error was 33% (IQR: 18-59%) and 34% (IQR: 16-66%) for the first and second models respectively. Both models had comparable median total absolute percentage errors but lower maximum total absolute percentage errors as compared to the classical ARIMA model. A deep-learning approach using Bi-LSTM architecture and open-source data was validated on 190 countries to forecast the daily number of cases in the early stages of the COVID-19 outbreak. Fewer variables could potentially be used without impacting prediction accuracy.

摘要

COVID-19 在全球范围内造成了重大的发病率和死亡率。我们开发了一种模型,该模型使用固定时间点前三十天的数据来预测大流行早期十四天后的每日新 COVID-19 病例数。收集了各种时变因素,包括每日确诊病例数、繁殖数、政策措施、流动性和航班数量。使用双向长短期记忆(Bi-LSTM)架构的深度学习模型在 2020 年 1 月 22 日至 2021 年 1 月 8 日的数据上进行训练,以预测 2021 年 1 月 9 日至 31 日期间 190 个国家的 COVID-19 新每日病例数,提前 14 天。开发了第二个模型,该模型变量较少,但具有类似的架构。使用平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)和总绝对百分比误差对结果进行总结,并与经典 ARIMA 模型的结果进行比较。第一个模型的中位数 MAE 为 157 例/天(IQR:26-666),第二个模型的中位数 MAE 为 150 例/天(IQR:26-716)。预测结果更准确的国家每日病例数更多,经历了更多波的 COVID-19 感染。在预测期内有超过 10000 例病例的国家中,第一个模型和第二个模型的中位数总绝对百分比误差分别为 33%(IQR:18-59%)和 34%(IQR:16-66%)。与经典 ARIMA 模型相比,这两个模型的中位数总绝对百分比误差相当,但最大总绝对百分比误差较低。使用 Bi-LSTM 架构和开源数据的深度学习方法在 190 个国家进行了验证,以预测 COVID-19 爆发初期的每日病例数。减少变量数量而不影响预测准确性是可能的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b660/10589260/1aac962f4630/41598_2023_44924_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验