Suppr超能文献

用于并行高场核磁共振的人工智能驱动匀场

Artificial intelligence-driven shimming for parallel high field nuclear magnetic resonance.

作者信息

Becker Moritz, Cheng Yen-Tse, Voigt Achim, Chenakkara Ajmal, He Mengjia, Lehmkuhl Sören, Jouda Mazin, Korvink Jan G

机构信息

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany.

出版信息

Sci Rep. 2023 Oct 20;13(1):17983. doi: 10.1038/s41598-023-45021-6.

Abstract

Rapid drug development requires a high throughput screening technology. NMR could benefit from parallel detection but is hampered by technical obstacles. Detection sites must be magnetically shimmed to ppb uniformity, which for parallel detection is precluded by commercial shimming technology. Here we show that, by centering a separate shim system over each detector and employing deep learning to cope with overlapping non-orthogonal shimming fields, parallel detectors can be rapidly calibrated. Our implementation also reports the smallest NMR stripline detectors to date, based on an origami technique, facilitating further upscaling in the number of detection sites within the magnet bore.

摘要

快速药物研发需要高通量筛选技术。核磁共振(NMR)可从并行检测中受益,但受到技术障碍的阻碍。检测位点必须进行磁匀场至十亿分之一的均匀度,而对于并行检测,商业匀场技术无法做到这一点。在此我们表明,通过在每个探测器上方设置一个单独的匀场系统,并利用深度学习来处理重叠的非正交匀场,并行探测器能够快速校准。我们的实施方案还展示了基于折纸技术的迄今为止最小的NMR带状线探测器,有助于进一步增加磁体孔内检测位点的数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb66/10589267/d85c5b19aaaf/41598_2023_45021_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验