Suppr超能文献

机器学习在质子磁共振波谱工作流程中的应用综述。

A review of machine learning applications for the proton MR spectroscopy workflow.

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

Magn Reson Med. 2023 Oct;90(4):1253-1270. doi: 10.1002/mrm.29793. Epub 2023 Jul 4.

Abstract

This literature review presents a comprehensive overview of machine learning (ML) applications in proton MR spectroscopy (MRS). As the use of ML techniques in MRS continues to grow, this review aims to provide the MRS community with a structured overview of the state-of-the-art methods. Specifically, we examine and summarize studies published between 2017 and 2023 from major journals in the MR field. We categorize these studies based on a typical MRS workflow, including data acquisition, processing, analysis, and artificial data generation. Our review reveals that ML in MRS is still in its early stages, with a primary focus on processing and analysis techniques, and less attention given to data acquisition. We also found that many studies use similar model architectures, with little comparison to alternative architectures. Additionally, the generation of artificial data is a crucial topic, with no consistent method for its generation. Furthermore, many studies demonstrate that artificial data suffers from generalization issues when tested on in vivo data. We also conclude that risks related to ML models should be addressed, particularly for clinical applications. Therefore, output uncertainty measures and model biases are critical to investigate. Nonetheless, the rapid development of ML in MRS and the promising results from the reviewed studies justify further research in this field.

摘要

这篇文献综述全面介绍了机器学习(ML)在质子磁共振波谱(MRS)中的应用。随着 ML 技术在 MRS 中的应用不断增加,本综述旨在为 MRS 社区提供最新方法的结构化概述。具体来说,我们检查并总结了 2017 年至 2023 年间主要磁共振领域期刊发表的研究。我们根据典型的 MRS 工作流程对这些研究进行分类,包括数据采集、处理、分析和人工数据生成。我们的综述表明,MRS 中的 ML 仍处于早期阶段,主要关注处理和分析技术,而对数据采集的关注较少。我们还发现,许多研究使用相似的模型架构,很少与替代架构进行比较。此外,人工数据的生成是一个关键主题,目前还没有生成人工数据的统一方法。此外,许多研究表明,人工数据在测试体内数据时存在泛化问题。我们还得出结论,与 ML 模型相关的风险应得到解决,特别是对于临床应用。因此,输出不确定性度量和模型偏差对于研究至关重要。尽管如此,MRS 中 ML 的快速发展和综述研究中令人鼓舞的结果证明了该领域进一步研究的合理性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验