Suppr超能文献

带有随机匀场值的采集可以增强人工智能驱动的 NMR 匀场。

Acquisitions with random shim values enhance AI-driven NMR shimming.

机构信息

Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, Karlsruhe 76131, Germany.

Forschungszentrum Jülich (FZJ), Jülich Supercomputing Centre, Jülich 52428, Germany.

出版信息

J Magn Reson. 2022 Dec;345:107323. doi: 10.1016/j.jmr.2022.107323. Epub 2022 Oct 30.

Abstract

Shimming is still an unavoidable, time-consuming and cumbersome burden that precedes NMR experiments, and aims to achieve a homogeneous magnetic field distribution, which is required for expressive spectroscopy measurements. This study presents multiple enhancements to AI-driven shimming. We achieve fast, quasi-iterative shimming on multiple shims simultaneously via a temporal history that combines spectra and past shim actions. Moreover, we enable efficient data collection by randomized dataset acquisition, allowing scalability to higher-order shims. Application at a low-field benchtop magnet reduces the linewidth in 87 of 100 random distortions from ∼ 4 Hz to below 1 Hz, within less than 10 NMR acquisitions. Compared to, and combined with, traditional methods, we significantly enhance both the speed and performance of shimming algorithms. In particular, AI-driven shimming needs roughly 1/3 acquisitions, and helps to avoid local minima in 96% of the cases. Our dataset and code is publicly available.

摘要

匀场仍然是 NMR 实验之前不可避免的、耗时且繁琐的负担,其目的是实现均匀的磁场分布,这是表达性光谱测量所必需的。本研究对 AI 驱动的匀场进行了多项改进。我们通过结合光谱和过去的匀场操作的时间历史来实现多个匀场的快速、准迭代匀场。此外,我们通过随机数据集采集来实现高效的数据采集,从而实现对更高阶匀场的可扩展性。在低场台式磁体上的应用将 100 个随机失真中的 87 个的线宽从约 4 Hz 降低到 1 Hz 以下,这在不到 10 次 NMR 采集内完成。与传统方法相比,我们显著提高了匀场算法的速度和性能。特别是,AI 驱动的匀场需要大约 1/3 的采集次数,并且有助于避免 96%的情况下的局部最小值。我们的数据集和代码是公开的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验