Suppr超能文献

利用深度学习和基于图的建模早期检测认知能力下降。

Early detection of cognitive decline with deep learning and graph-based modeling.

作者信息

Patil Sunita, Kukreja Swetta

机构信息

Computer Science and Engineering, Amity School of Engineering and Technology, Mumbai, Maharashtra 410206, India.

出版信息

MethodsX. 2025 Jun 2;14:103405. doi: 10.1016/j.mex.2025.103405. eCollection 2025 Jun.

Abstract

In today's world, increasing stress and depression significantly impact cognitive well-being, making early detection of cognitive impairment essential for timely intervention. This work introduces a Multimodal Fusion Cognitive Assessment Framework that leverages advanced deep learning and graph intelligence to enhance early identification accuracy. Traditional tools like the Montreal Cognitive Assessment (MOCA) are limited in adaptability, prompting the need for a more dynamic, data-driven approach. The framework is validated using datasets involving cognitive tests, voice samples, and physiological signals. It enables a scalable, personalized, and adaptive cognitive assessment system that improves early detection and supports targeted intervention strategies. By integrating deep learning and information fusion, this approach addresses the complexity of cognitive health in a modern context.•This paper introduces Multimodal Deep Learning Integration, incorporating MOCA scores, behavioral data, speech signals, and physiological parameters using GAT, TAT, and CNN-LSTM models to capture diverse cognitive indicators.•The proposed model achieves superior performance through Information Fusion via Heterogeneous GNNs, effectively merging cross-domain data to enable holistic cognitive state assessment via inter-modality learning.•This paper applies Reinforcement Learning (RL) to personalize user interactions based on real-time cognitive and stress cues, reducing cognitive overload and enhancing engagement.

摘要

在当今世界,压力和抑郁的不断增加对认知健康产生了重大影响,因此早期发现认知障碍对于及时干预至关重要。这项工作引入了一个多模态融合认知评估框架,该框架利用先进的深度学习和图智能来提高早期识别的准确性。像蒙特利尔认知评估量表(MOCA)这样的传统工具在适应性方面存在局限性,这促使人们需要一种更具动态性、数据驱动的方法。该框架使用涉及认知测试、语音样本和生理信号的数据集进行了验证。它能够实现一个可扩展、个性化且自适应的认知评估系统,该系统可改善早期检测并支持有针对性的干预策略。通过整合深度学习和信息融合,这种方法解决了现代背景下认知健康的复杂性。

• 本文介绍了多模态深度学习集成,使用图注意力网络(GAT)、时间注意力网络(TAT)和卷积神经网络 - 长短期记忆网络(CNN - LSTM)模型整合MOCA分数、行为数据、语音信号和生理参数,以捕捉各种认知指标。

• 所提出的模型通过异构图神经网络进行信息融合实现了卓越的性能,有效地合并跨域数据,通过跨模态学习实现整体认知状态评估。

• 本文应用强化学习(RL)根据实时认知和压力线索对用户交互进行个性化设置,减少认知过载并增强参与度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8be8/12192688/0ba8f5dc9f00/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验