Suppr超能文献

队列简介:都灵前列腺癌预后(TPCP)队列。

Cohort profile: the Turin prostate cancer prognostication (TPCP) cohort.

作者信息

Destefanis Nicolas, Fiano Valentina, Milani Lorenzo, Vasapolli Paolo, Fiorentino Michelangelo, Giunchi Francesca, Lianas Luca, Del Rio Mauro, Frexia Francesca, Pireddu Luca, Molinaro Luca, Cassoni Paola, Papotti Mauro Giulio, Gontero Paolo, Calleris Giorgio, Oderda Marco, Ricardi Umberto, Iorio Giuseppe Carlo, Fariselli Piero, Isaevska Elena, Akre Olof, Zelic Renata, Pettersson Andreas, Zugna Daniela, Richiardi Lorenzo

机构信息

Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy.

DIMEC Department of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, Bologna, Italy.

出版信息

Front Oncol. 2023 Oct 6;13:1242639. doi: 10.3389/fonc.2023.1242639. eCollection 2023.

Abstract

INTRODUCTION

Prostate cancer (PCa) is the most frequent tumor among men in Europe and has both indolent and aggressive forms. There are several treatment options, the choice of which depends on multiple factors. To further improve current prognostication models, we established the Turin Prostate Cancer Prognostication (TPCP) cohort, an Italian retrospective biopsy cohort of patients with PCa and long-term follow-up. This work presents this new cohort with its main characteristics and the distributions of some of its core variables, along with its potential contributions to PCa research.

METHODS

The TPCP cohort includes consecutive non-metastatic patients with first positive biopsy for PCa performed between 2008 and 2013 at the main hospital in Turin, Italy. The follow-up ended on December 31 2021. The primary outcome is the occurrence of metastasis; death from PCa and overall mortality are the secondary outcomes. In addition to numerous clinical variables, the study's prognostic variables include histopathologic information assigned by a centralized uropathology review using a digital pathology software system specialized for the study of PCa, tumor DNA methylation in candidate genes, and features extracted from digitized slide images via Deep Neural Networks.

RESULTS

The cohort includes 891 patients followed-up for a median time of 10 years. During this period, 97 patients had progression to metastatic disease and 301 died; of these, 56 died from PCa. In total, 65.3% of the cohort has a Gleason score less than or equal to 3 + 4, and 44.5% has a clinical stage cT1. Consistent with previous studies, age and clinical stage at diagnosis are important prognostic factors: the crude cumulative incidence of metastatic disease during the 14-years of follow-up increases from 9.1% among patients younger than 64 to 16.2% for patients in the age group of 75-84, and from 6.1% for cT1 stage to 27.9% in cT3 stage.

DISCUSSION

This study stands to be an important resource for updating existing prognostic models for PCa on an Italian cohort. In addition, the integrated collection of multi-modal data will allow development and/or validation of new models including new histopathological, digital, and molecular markers, with the goal of better directing clinical decisions to manage patients with PCa.

摘要

引言

前列腺癌(PCa)是欧洲男性中最常见的肿瘤,有惰性和侵袭性两种形式。有多种治疗选择,其选择取决于多个因素。为了进一步改进当前的预后模型,我们建立了都灵前列腺癌预后(TPCP)队列,这是一个对前列腺癌患者进行长期随访的意大利回顾性活检队列。这项工作展示了这个新队列的主要特征、一些核心变量的分布情况,以及它对前列腺癌研究的潜在贡献。

方法

TPCP队列包括2008年至2013年期间在意大利都灵的主要医院首次因前列腺癌活检呈阳性的连续非转移性患者。随访于2021年12月31日结束。主要结局是转移的发生;前列腺癌死亡和总死亡率是次要结局。除了众多临床变量外,该研究的预后变量还包括使用专门用于前列腺癌研究的数字病理软件系统通过集中泌尿病理学审查分配的组织病理学信息、候选基因中的肿瘤DNA甲基化,以及通过深度神经网络从数字化幻灯片图像中提取的特征。

结果

该队列包括891名患者,中位随访时间为10年。在此期间,97名患者病情进展为转移性疾病,301人死亡;其中,56人死于前列腺癌。总体而言,该队列中65.3%的患者Gleason评分小于或等于3 + 4,44.5%的患者临床分期为cT1。与先前的研究一致,诊断时的年龄和临床分期是重要的预后因素:在14年的随访期间,转移性疾病的粗累积发病率从64岁以下患者中的9.1%增加到75 - 84岁年龄组患者中的16.2%,从cT1期的6.1%增加到cT3期的27.9%。

讨论

这项研究有望成为更新意大利队列中前列腺癌现有预后模型的重要资源。此外,多模态数据的综合收集将允许开发和/或验证包括新的组织病理学、数字和分子标记在内的新模型,目标是更好地指导前列腺癌患者管理的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/050d/10587560/454bb564071a/fonc-13-1242639-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验