Suppr超能文献

1064纳米激光间质热疗对脑组织的建模与实验验证

Modeling and experimental validation of 1,064 nm laser interstitial thermal therapy on brain tissue.

作者信息

Cao Peng, Shi Dingsheng, Li Ding, Zhu Zhoule, Zhu Junming, Zhang Jianmin, Bai Ruiliang

机构信息

Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China.

Research and Development Department, Hangzhou GenLight MedTech Co., Ltd., Hangzhou, Zhejiang Province, China.

出版信息

Front Neurol. 2023 Oct 6;14:1237394. doi: 10.3389/fneur.2023.1237394. eCollection 2023.

Abstract

INTRODUCTION

Laser interstitial thermal therapy (LITT) at 1064 nm is widely used to treat epilepsy and brain tumors; however, no numerical model exists that can predict the ablation region with careful in vivo validation.

METHODS

In this study, we proposed a model with a system of finite element methods simulating heat transfer inside the brain tissue, radiative transfer from the applicator into the brain tissue, and a model for tissue damage.

RESULTS

To speed up the computation for practical applications, we also validated P1-approximation as an efficient and fast method for calculating radiative transfer by comparing it with Monte Carlo simulation. Finally, we validated the proposed numerical model in vivo on six healthy canines and eight human patients with epilepsy and found strong agreement between the predicted temperature profile and ablation area and the magnetic resonance imaging-measured results.

DISCUSSION

Our results demonstrate the feasibility and reliability of the model in predicting the ablation area of 1,064 nm LITT, which is important for presurgical planning when using LITT.

摘要

引言

1064纳米的激光间质热疗法(LITT)被广泛用于治疗癫痫和脑肿瘤;然而,目前尚无能够在经过仔细的体内验证后预测消融区域的数值模型。

方法

在本研究中,我们提出了一个模型,该模型采用有限元方法系统来模拟脑组织内部的热传递、从施源器到脑组织的辐射传递以及组织损伤模型。

结果

为了加快实际应用中的计算速度,我们还通过将P1近似与蒙特卡罗模拟进行比较,验证了其作为一种计算辐射传递的高效快速方法。最后,我们在六只健康犬和八名癫痫患者体内对所提出的数值模型进行了验证,发现预测的温度分布和消融区域与磁共振成像测量结果之间有高度一致性。

讨论

我们的结果证明了该模型在预测1064纳米LITT消融区域方面的可行性和可靠性,这对于使用LITT进行术前规划非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b69d/10588634/47a72489953c/fneur-14-1237394-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验