Suppr超能文献

通过酶促发散 C─H 键氧化官能化来实现γ-和ε-酮芳环的简便方法。

A Simple Access to γ- and ε-Keto Arenes via Enzymatic Divergent C─H Bond Oxyfunctionalization.

机构信息

School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.

出版信息

Adv Sci (Weinh). 2023 Dec;10(34):e2304605. doi: 10.1002/advs.202304605. Epub 2023 Oct 23.

Abstract

Performing divergent C─H bond functionalization on molecules with multiple reaction sites is a significant challenge in organic chemistry. Biocatalytic oxyfunctionalization reactions of these compounds to the corresponding ketones/aldehydes are typically hindered by selectivity issues. To address these challenges, the catalytic performance of oxidoreductases is explored. The results show that combining the peroxygenase-catalyzed propargylic C─H bond oxidation with the Old Yellow Enzyme-catalyzed reduction of conjugated C─C triple bonds in one-pot enables the regio- and chemoselective oxyfunctionalization of sp C─H bonds that are distant from benzylic sites. This enzymatic approach yielded a variety of γ-keto arenes with diverse structural and electronic properties in yields of up to 99% and regioselectivity of 100%, which are difficult to achieve using other chemocatalysis and enzymes. By adjusting the C─C triple bond, the carbonyl group's position can be further tuned to yield ε-keto arenes. This enzymatic approach can be combined with other biocatalysts to establish new synthetic pathways for accessing various challenging divergent C─H bond functionalization reactions.

摘要

在有机化学中,对具有多个反应位点的分子进行发散 C─H 键功能化是一项重大挑战。这些化合物的生物催化氧化官能团化反应通常受到选择性问题的阻碍。为了应对这些挑战,人们探索了氧化还原酶的催化性能。结果表明,将过氧化物酶催化的炔丙基 C─H 键氧化与 Old Yellow Enzyme 催化的共轭 C─C 三键还原结合在一锅法中,可以实现远离苄位的 sp C─H 键的区域和化学选择性的氧化官能团化。这种酶促方法以高达 99%的产率和 100%的区域选择性得到了各种具有不同结构和电子性质的γ-酮芳基化合物,这是其他化学催化和酶难以实现的。通过调整 C─C 三键,可以进一步调节羰基的位置,以得到ε-酮芳基化合物。这种酶促方法可以与其他生物催化剂结合,为各种具有挑战性的发散 C─H 键功能化反应建立新的合成途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64ec/10700168/6ad6963ca01c/ADVS-10-2304605-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验