Makkinayeri Saeed, Guidotti Roberto, Basti Alessio, Woolrich Mark W, Gohil Chetan, Pettorruso Mauro, Ermolova Maria, Ilmoniemi Risto J, Ziemann Ulf, Romani Gian Luca, Pizzella Vittorio, Marzetti Laura
Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy.
Brain Stimul. 2025 May-Jun;18(3):800-809. doi: 10.1016/j.brs.2025.03.020. Epub 2025 Mar 30.
Systems neuroscience studies have shown that baseline brain activity can be categorized into large-scale networks (resting-state-networks, RNSs), with influence on cognitive abilities and clinical symptoms. These insights have guided millimeter-precise selection of brain stimulation targets based on RSNs. Concurrently, Transcranial Magnetic Stimulation (TMS) studies revealed that baseline brain states, measured by EEG signal power or phase, affect stimulation outcomes. However, EEG dynamics in these studies are mostly limited to single regions or channels, lacking the spatial resolution needed for accurate network-level characterization.
We aim at mapping brain networks with high spatial and temporal precision and to assess whether the occurrence of specific network-level-states impact TMS outcome. To this end, we will identify large-scale brain networks and explore how their dynamics relates to corticospinal excitability.
This study leverages Hidden Markov Models to identify large-scale brain states from pre-stimulus source space high-density-EEG data collected during TMS targeting the left primary motor cortex in twenty healthy subjects. The association between states and fMRI-defined RSNs was explored using the Yeo atlas, and the trial-by-trial relation between states and corticospinal excitability was examined.
We extracted fast-dynamic large-scale brain states with unique spatiotemporal and spectral features resembling major RSNs. The engagement of different networks significantly influences corticospinal excitability, with larger motor evoked potentials when baseline activity was dominated by the sensorimotor network.
These findings represent a step forward towards characterizing brain network in EEG-TMS with both high spatial and temporal resolution and underscore the importance of incorporating large-scale network dynamics into TMS experiments.
系统神经科学研究表明,基线脑活动可分为大规模网络(静息态网络,RNSs),对认知能力和临床症状有影响。这些见解指导了基于RNSs对脑刺激靶点进行毫米级精确选择。同时,经颅磁刺激(TMS)研究表明,通过脑电图信号功率或相位测量的基线脑状态会影响刺激结果。然而,这些研究中的脑电图动力学大多局限于单个区域或通道,缺乏准确的网络水平特征描述所需的空间分辨率。
我们旨在以高时空精度绘制脑网络,并评估特定网络水平状态的出现是否会影响TMS结果。为此,我们将识别大规模脑网络,并探索其动力学与皮质脊髓兴奋性之间的关系。
本研究利用隐马尔可夫模型从20名健康受试者在TMS靶向左侧初级运动皮层期间收集的刺激前源空间高密度脑电图数据中识别大规模脑状态。使用Yeo图谱探索状态与功能磁共振成像定义的RNSs之间的关联,并检查状态与皮质脊髓兴奋性之间的逐次试验关系。
我们提取了具有独特时空和频谱特征的快速动态大规模脑状态,类似于主要的RNSs。不同网络的参与显著影响皮质脊髓兴奋性,当基线活动由感觉运动网络主导时,运动诱发电位更大。
这些发现代表了在高时空分辨率下表征脑电图-TMS中的脑网络方面向前迈出的一步,并强调了将大规模网络动力学纳入TMS实验的重要性。