Suppr超能文献

用于腹泻病因预测的模型估计天气数据和直接观测天气数据的评估

Assessment of Model Estimated and Directly Observed Weather Data for Etiological Prediction of Diarrhea.

作者信息

Brintz Ben J, Colston Josh M, Ahmed Sharia M, Chao Dennis L, Zaitschik Ben, Leung Daniel T

机构信息

Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA.

Division of Infectious Diseases and International Health, University of Virginia School of Medicine, USA.

出版信息

medRxiv. 2023 Oct 13:2023.10.12.23296959. doi: 10.1101/2023.10.12.23296959.

Abstract

Recent advances in clinical prediction for diarrheal etiology in low- and middle-income countries have revealed that addition of weather data improves predictive performance. However, the optimal source of weather data remains unclear. We aim to compare model estimated satellite- and ground-based observational data with weather station directly-observed data for diarrheal prediction. We used clinical and etiological data from a large multi-center study of children with diarrhea to compare these methods. We show that the two sources of weather conditions perform similarly in most locations. We conclude that while model estimated data is a viable, scalable tool for public health interventions and disease prediction, directly observed weather station data approximates the modeled data, and given its ease of access, is likely adequate for prediction of diarrheal etiology in children in low- and middle-income countries.

摘要

低收入和中等收入国家在腹泻病因临床预测方面的最新进展表明,添加天气数据可提高预测性能。然而,天气数据的最佳来源仍不明确。我们旨在比较模型估计的卫星和地面观测数据与气象站直接观测数据在腹泻预测中的效果。我们使用了一项针对腹泻儿童的大型多中心研究的临床和病因数据来比较这些方法。我们发现,在大多数地区,这两种天气状况来源的表现相似。我们得出结论,虽然模型估计数据是用于公共卫生干预和疾病预测的可行且可扩展的工具,但直接观测的气象站数据与模型数据相近,并且鉴于其易于获取,可能足以用于低收入和中等收入国家儿童腹泻病因的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fc1/10593035/132f3dbaeaa9/nihpp-2023.10.12.23296959v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验