Suppr超能文献

一种将多个数据源集成到儿科腹泻实时临床预测中的模块化方法。

A modular approach to integrating multiple data sources into real-time clinical prediction for pediatric diarrhea.

机构信息

Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States.

Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, United States.

出版信息

Elife. 2021 Feb 2;10:e63009. doi: 10.7554/eLife.63009.

Abstract

Traditional clinical prediction models focus on parameters of the individual patient. For infectious diseases, sources external to the patient, including characteristics of prior patients and seasonal factors, may improve predictive performance. We describe the development of a predictive model that integrates multiple sources of data in a principled statistical framework using a post-test odds formulation. Our method enables electronic real-time updating and flexibility, such that components can be included or excluded according to data availability. We apply this method to the prediction of etiology of pediatric diarrhea, where 'pre-test' epidemiologic data may be highly informative. Diarrhea has a high burden in low-resource settings, and antibiotics are often over-prescribed. We demonstrate that our integrative method outperforms traditional prediction in accurately identifying cases with a viral etiology, and show that its clinical application, especially when used with an additional diagnostic test, could result in a 61% reduction in inappropriately prescribed antibiotics.

摘要

传统的临床预测模型侧重于个体患者的参数。对于传染病,患者以外的来源,包括既往患者的特征和季节性因素,可能会提高预测性能。我们描述了一种预测模型的开发,该模型使用后验概率公式在有原则的统计框架中整合了多个数据源。我们的方法实现了电子实时更新和灵活性,使得根据数据可用性可以包含或排除组件。我们将该方法应用于儿科腹泻病因的预测,其中“预测试”流行病学数据可能具有高度信息性。腹泻在资源匮乏的环境中负担沉重,抗生素经常被过度开具。我们证明,我们的综合方法在准确识别病毒性病因的病例方面优于传统预测方法,并表明其临床应用,特别是与额外的诊断测试一起使用时,可以将不适当开具的抗生素减少 61%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e280/7853717/083d5580fed0/elife-63009-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验