Suppr超能文献

使用机器学习对结肠癌患者的淋巴结转移进行术前评估:一项初步研究。

Preoperative assessment of lymph node metastasis in Colon Cancer patients using machine learning: a pilot study.

机构信息

Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Ave, Suite 1600, Chicago, IL, 60611, USA.

Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

出版信息

Cancer Imaging. 2020 Apr 25;20(1):30. doi: 10.1186/s40644-020-00308-z.

Abstract

BACKGROUND

Preoperative detection of lymph node (LN) metastasis is critical for planning treatments in colon cancer (CC). The clinical diagnostic criteria based on the size of the LNs are not sensitive to determine metastasis using CT images. In this retrospective study, we investigated the potential value of CT texture features to diagnose LN metastasis using preoperative CT data and patient characteristics by developing quantitative prediction models.

METHODS

A total of 390 CC patients, undergone surgical resection, were enrolled in this monocentric study. 390 histologically validated LNs were collected from patients and randomly separated into training (312 patients, 155 metastatic and 157 normal LNs) and test cohorts (78 patients, 39 metastatic and 39 normal LNs). Six patient characteristics and 146 quantitative CT imaging features were analyzed and key variables were determined using either exhaustive search or least absolute shrinkage algorithm. Two kernel-based support vector machine classifiers (patient-characteristic model and radiomic-derived model), generated with 10-fold cross-validation, were compared with the clinical model that utilizes long-axis diameter for diagnosis of metastatic LN. The performance of the models was evaluated on the test cohort by computing accuracy, sensitivity, specificity, and area under the receiver operating curve (AUC).

RESULTS

The clinical model had an overall diagnostic accuracy of 64.87%; specifically, accuracy of 65.38% and 62.82%, sensitivity of 83.87% and 84.62%, and specificity of 47.13% and 41.03% for training and test cohorts, respectively. The patient-demographic model obtained accuracy of 67.31% and 73.08%, the sensitivity of 62.58% and 69.23%, and specificity of 71.97% and 76.23% for training and test cohorts, respectively. Besides, the radiomic-derived model resulted in an accuracy of 81.09% and 79.49%, sensitivity of 83.87% and 74.36%, and specificity of 78.34% and 84.62% for training and test cohorts, respectively. Furthermore, the diagnostic performance of the radiomic-derived model was significantly higher than clinical and patient-demographic models (p < 0.02) according to the DeLong method.

CONCLUSIONS

The texture of the LNs provided characteristic information about the histological status of the LNs. The radiomic-derived model leveraging LN texture provides better preoperative diagnostic accuracy for the detection of metastatic LNs compared to the clinically accepted diagnostic criteria and patient-demographic model.

摘要

背景

术前检测淋巴结(LN)转移对于结肠癌(CC)的治疗计划至关重要。基于淋巴结大小的临床诊断标准在使用 CT 图像时对确定转移不敏感。在这项回顾性研究中,我们通过开发定量预测模型,使用术前 CT 数据和患者特征,研究了 CT 纹理特征在诊断 LN 转移方面的潜在价值。

方法

共纳入 390 例接受手术切除的 CC 患者。从患者中收集了 390 个经组织学验证的 LN,并将其随机分为训练集(312 例患者,155 例转移性和 157 例正常 LN)和测试集(78 例患者,39 例转移性和 39 例正常 LN)。分析了 6 项患者特征和 146 项定量 CT 成像特征,并使用穷尽搜索或最小绝对收缩和选择算子确定关键变量。使用 10 倍交叉验证生成两个基于核的支持向量机分类器(患者特征模型和放射组学衍生模型),并在测试集上评估这些模型的性能,通过计算准确性、敏感性、特异性和接收者操作特征曲线下的面积(AUC)来评估模型的性能。

结果

临床模型的总体诊断准确率为 64.87%;具体而言,训练集和测试集的准确率分别为 65.38%和 62.82%,敏感性分别为 83.87%和 84.62%,特异性分别为 47.13%和 41.03%。患者特征模型的准确率分别为 67.31%和 73.08%,敏感性分别为 62.58%和 69.23%,特异性分别为 71.97%和 76.23%。此外,放射组学衍生模型的准确率分别为 81.09%和 79.49%,敏感性分别为 83.87%和 74.36%,特异性分别为 78.34%和 84.62%。此外,根据 DeLong 方法,放射组学衍生模型的诊断性能明显优于临床和患者特征模型(p<0.02)。

结论

LN 的纹理提供了关于 LN 组织学状态的特征信息。与临床接受的诊断标准和患者特征模型相比,基于 LN 纹理的放射组学衍生模型可提高术前检测转移性 LN 的诊断准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验