Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China.
Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
Nat Commun. 2023 Oct 24;14(1):6748. doi: 10.1038/s41467-023-42155-z.
Cytokine therapy, involving interleukin-15 (IL-15), is a promising strategy for cancer immunotherapy. However, clinical application has been limited due to severe toxicity and the relatively low immune response rate, caused by wide distribution of cytokine receptors, systemic immune activation and short half-life of IL-15. Here we show that a biomimetic nanovaccine, developed to co-deliver IL-15 and an antigen/major histocompatibility complex (MHC) selectively targets IL-15 to antigen-specific cytotoxic T lymphocytes (CTL), thereby reducing off-target toxicity. The biomimetic nanovaccine is composed of cytomembrane vesicles, derived from genetically engineered dendritic cells (DC), onto which IL-15/IL-15 receptor α (IL-15Rα), tumor-associated antigenic (TAA) peptide/MHC-I, and relevant costimulatory molecules are simultaneously anchored. We demonstrate that, in contrast to conventional IL-15 therapy, the biomimetic nanovaccine with multivalent IL-15 self-transpresentation (biNV-IL-15) prolonged blood circulation of the cytokine with an 8.2-fold longer half-life than free IL-15 and improved the therapeutic window. This dual targeting strategy allows for spatiotemporal manipulation of therapeutic T cells, elicits broad spectrum antigen-specific T cell responses, and promotes cures in multiple syngeneic tumor models with minimal systemic side effects.
细胞因子治疗,包括白细胞介素-15(IL-15),是癌症免疫治疗的一种很有前途的策略。然而,由于细胞因子受体的广泛分布、全身免疫激活和 IL-15 的半衰期较短,导致严重的毒性和相对较低的免疫反应率,其临床应用受到限制。在这里,我们展示了一种仿生纳米疫苗,该疫苗旨在共同递送 IL-15 和抗原/主要组织相容性复合体(MHC),将 IL-15 选择性靶向抗原特异性细胞毒性 T 淋巴细胞(CTL),从而降低脱靶毒性。该仿生纳米疫苗由源自基因工程树突状细胞(DC)的细胞膜囊泡组成,其上同时锚定了 IL-15/IL-15 受体α(IL-15Rα)、肿瘤相关抗原肽/MHC-I 和相关共刺激分子。我们证明,与传统的 IL-15 治疗相比,具有多价 IL-15 自我呈现的仿生纳米疫苗(biNV-IL-15)延长了细胞因子的血液循环半衰期,比游离 IL-15 长 8.2 倍,并改善了治疗窗口。这种双重靶向策略允许对治疗性 T 细胞进行时空操作,引发广谱抗原特异性 T 细胞反应,并在多个同种异体肿瘤模型中促进治愈,而没有明显的全身副作用。