DWI - Leibniz-Institut für Interaktive Materialien e.V, Forckenbeckstr. 50, Aachen, 52074, Germany.
Institute of Molecular and Cellular Anatomy, Uniklinik, RWTH Aachen University, Aachen, 52074, Germany.
Nat Commun. 2019 Sep 6;10(1):4027. doi: 10.1038/s41467-019-11475-4.
Cells feel the forces exerted on them by the surrounding extracellular matrix (ECM) environment and respond to them. While many cell fate processes are dictated by these forces, which are highly synchronized in space and time, abnormal force transduction is implicated in the progression of many diseases (muscular dystrophy, cancer). However, material platforms that enable transient, cyclic forces in vitro to recreate an in vivo-like scenario remain a challenge. Here, we report a hydrogel system that rapidly beats (actuates) with spatio-temporal control using a near infra-red light trigger. Small, user-defined mechanical forces (~nN) are exerted on cells growing on the hydrogel surface at frequencies up to 10 Hz, revealing insights into the effect of actuation on cell migration and the kinetics of reversible nuclear translocation of the mechanosensor protein myocardin related transcription factor A, depending on the actuation amplitude, duration and frequency.
细胞感受周围细胞外基质(ECM)环境施加的力并对其作出响应。虽然许多细胞命运过程受到这些力的控制,这些力在空间和时间上高度同步,但异常的力转导与许多疾病(肌肉营养不良、癌症)的进展有关。然而,能够在体外产生短暂、周期性力以重现类似体内情景的材料平台仍然是一个挑战。在这里,我们报告了一种水凝胶系统,该系统使用近红外光触发器实现了时空控制的快速拍打(致动)。在水凝胶表面生长的细胞上以高达 10 Hz 的频率施加小的、用户定义的机械力(~nN),揭示了致动对细胞迁移的影响,以及机械敏感蛋白心肌营养素相关转录因子 A 的可逆核易位动力学,这取决于致动幅度、持续时间和频率。