Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States.
Department of Industrial and Molecular Pharmaceutics and Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
J Chem Theory Comput. 2023 Nov 14;19(21):7873-7881. doi: 10.1021/acs.jctc.3c00720. Epub 2023 Oct 25.
DNA nanostructures have emerged as promising nanomedical tools due to their biocompatibility and tunable behavior. Recent work has shown that DNA nanocages decorated with organic dendrimers strongly bind human serum albumin (HSA), yet the dynamic structures of these complexes remain uncharacterized. This theoretical and computational investigation elucidates the fuzzy interactions between dendritically functionalized cubic DNA nanocages and HSA. The dendrimer-HSA interactions occur via nonspecific binding with the protein thermodynamically and kinetically free to cross the open faces of the cubic scaffold. However, the rigidity of the DNA scaffold prevents the binding energetics from scaling with the number of dendrimers. These discoveries not only provide a useful framework by which to model general interactions of DNA nanostructures complexed with serum proteins but also give valuable molecular insight into the design of next-generation DNA nanomedicines.
DNA 纳米结构由于其生物相容性和可调谐的特性,已成为有前途的纳米医学工具。最近的研究表明,用有机树枝状大分子修饰的 DNA 纳米笼能与人血清白蛋白(HSA)强烈结合,但这些复合物的动态结构仍未被描述。本理论和计算研究阐明了树枝状功能化立方 DNA 纳米笼与 HSA 之间的模糊相互作用。树枝状大分子与 HSA 的相互作用是通过与蛋白质的非特异性结合来实现的,这种结合使蛋白质在热力学和动力学上都能够自由穿过立方支架的开口面。然而,DNA 支架的刚性阻止了结合能随树枝状大分子数量的增加而增加。这些发现不仅为模型化 DNA 纳米结构与血清蛋白复合物的一般相互作用提供了一个有用的框架,而且为设计下一代 DNA 纳米药物提供了有价值的分子见解。