Suppr超能文献

比色法和电化学筛选用于糖尿病和糖尿病视网膜病变的早期检测-传感器阵列和机器学习的应用。

Colorimetric and Electrochemical Screening for Early Detection of Diabetes Mellitus and Diabetic Retinopathy-Application of Sensor Arrays and Machine Learning.

机构信息

Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.

Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0424 Oslo, Norway.

出版信息

Sensors (Basel). 2022 Jan 18;22(3):718. doi: 10.3390/s22030718.

Abstract

In this review, a selection of works on the sensing of biomarkers related to diabetes mellitus (DM) and diabetic retinopathy (DR) are presented, with the scope of helping and encouraging researchers to design sensor-array machine-learning (ML)-supported devices for robust, fast, and cost-effective early detection of these devastating diseases. First, we highlight the social relevance of developing systematic screening programs for such diseases and how sensor-arrays and ML approaches could ease their early diagnosis. Then, we present diverse works related to the colorimetric and electrochemical sensing of biomarkers related to DM and DR with non-invasive sampling (e.g., urine, saliva, breath, tears, and sweat samples), with a special mention to some already-existing sensor arrays and ML approaches. We finally highlight the great potential of the latter approaches for the fast and reliable early diagnosis of DM and DR.

摘要

在这篇综述中,我们选择了一些与糖尿病(DM)和糖尿病视网膜病变(DR)相关的生物标志物传感研究工作,旨在帮助和鼓励研究人员设计基于传感器阵列和机器学习(ML)的设备,以便对这些破坏性疾病进行快速、准确且经济高效的早期检测。首先,我们强调了为这些疾病开发系统性筛查方案的社会意义,以及传感器阵列和 ML 方法如何有助于早期诊断。然后,我们介绍了与 DM 和 DR 相关的生物标志物的比色和电化学生物传感研究工作,这些研究工作涉及非侵入性采样(例如尿液、唾液、呼吸、眼泪和汗液样本),特别提到了一些现有的传感器阵列和 ML 方法。最后,我们强调了这些方法在 DM 和 DR 的快速、可靠早期诊断方面的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8e0/8839630/715887a31813/sensors-22-00718-g004.jpg

相似文献

2
Combined Methods for Diabetic Retinopathy Screening, Using Retina Photographs and Tear Fluid Proteomics Biomarkers.
J Diabetes Res. 2015;2015:623619. doi: 10.1155/2015/623619. Epub 2015 Jun 29.
3
A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
J Med Syst. 2017 Nov 9;41(12):201. doi: 10.1007/s10916-017-0853-x.
4
Artificial intelligence for diabetic retinopathy screening: a review.
Eye (Lond). 2020 Mar;34(3):451-460. doi: 10.1038/s41433-019-0566-0. Epub 2019 Sep 5.
5
Diabetic retinopathy: Proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms.
J Proteomics. 2017 Jan 6;150:351-358. doi: 10.1016/j.jprot.2016.06.034. Epub 2016 Jul 1.
6
Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy.
Transl Vis Sci Technol. 2020 Jul 2;9(2):35. doi: 10.1167/tvst.9.2.35. eCollection 2020 Jul.
7
Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study.
Lancet Digit Health. 2020 May;2(5):e240-e249. doi: 10.1016/S2589-7500(20)30060-1. Epub 2020 Apr 23.
8
SCREEN-DR: Collaborative platform for diabetic retinopathy.
Int J Med Inform. 2018 Dec;120:137-146. doi: 10.1016/j.ijmedinf.2018.10.005. Epub 2018 Oct 18.
9
Diabetic retinopathy classification based on multipath CNN and machine learning classifiers.
Phys Eng Sci Med. 2021 Sep;44(3):639-653. doi: 10.1007/s13246-021-01012-3. Epub 2021 May 25.

引用本文的文献

1
Advances in materials science for ocular diseases induced by cardiovascular risk factors.
Front Bioeng Biotechnol. 2025 Jun 27;13:1618232. doi: 10.3389/fbioe.2025.1618232. eCollection 2025.
2
RNA-based diagnostic innovations: A new frontier in diabetes diagnosis and management.
Diab Vasc Dis Res. 2025 Mar-Apr;22(2):14791641251334726. doi: 10.1177/14791641251334726. Epub 2025 Apr 14.
4
Trends and hotspots in the field of diabetic retinopathy imaging research from 2000-2023.
Front Med (Lausanne). 2024 Oct 9;11:1481088. doi: 10.3389/fmed.2024.1481088. eCollection 2024.
5
Advancing Diabetes Management: The Future of Enzyme-Less Nanoparticle-Based Glucose Sensors-A Review.
J Diabetes Sci Technol. 2024 Mar 20:19322968241236211. doi: 10.1177/19322968241236211.
6
Convolutional neural network-based sea lion optimization algorithm for the detection and classification of diabetic retinopathy.
Acta Diabetol. 2023 Oct;60(10):1377-1389. doi: 10.1007/s00592-023-02122-y. Epub 2023 Jun 27.

本文引用的文献

1
Wearable Biosensors for Non-Invasive Sweat Diagnostics.
Biosensors (Basel). 2021 Jul 23;11(8):245. doi: 10.3390/bios11080245.
2
Machine Learning-Reinforced Noninvasive Biosensors for Healthcare.
Adv Healthc Mater. 2021 Sep;10(17):e2100734. doi: 10.1002/adhm.202100734. Epub 2021 Jun 24.
3
Breath biopsy of breast cancer using sensor array signals and machine learning analysis.
Sci Rep. 2021 Jan 8;11(1):103. doi: 10.1038/s41598-020-80570-0.
5
Recent Advances in Portable Biosensors for Biomarker Detection in Body Fluids.
Biosensors (Basel). 2020 Sep 18;10(9):127. doi: 10.3390/bios10090127.
6
Deep learning meets metabolomics: a methodological perspective.
Brief Bioinform. 2021 Mar 22;22(2):1531-1542. doi: 10.1093/bib/bbaa204.
7
A digital biomarker of diabetes from smartphone-based vascular signals.
Nat Med. 2020 Oct;26(10):1576-1582. doi: 10.1038/s41591-020-1010-5. Epub 2020 Aug 17.
8
Simultaneous Detection of Serum Glucose and Glycated Albumin on a Paper-Based Sensor for Acute Hyperglycemia and Diabetes Mellitus.
Anal Chem. 2020 Sep 1;92(17):11530-11534. doi: 10.1021/acs.analchem.0c02940. Epub 2020 Aug 19.
9
Applications of machine learning to diagnosis and treatment of neurodegenerative diseases.
Nat Rev Neurol. 2020 Aug;16(8):440-456. doi: 10.1038/s41582-020-0377-8. Epub 2020 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验