Center for Nanomedicine, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Small. 2024 Mar;20(10):e2306168. doi: 10.1002/smll.202306168. Epub 2023 Oct 25.
Coronary artery disease (CAD) is the most common type of heart disease and represents the leading cause of death in both men and women worldwide. Early detection of CAD is crucial for decreasing mortality, prolonging survival, and improving patient quality of life. Herein, a non-invasive is described, nanoparticle-based diagnostic technology which takes advantages of proteomic changes in the nano-bio interface for CAD detection. Nanoparticles (NPs) exposed to biological fluids adsorb on their surface a layer of proteins, the "protein corona" (PC). Pathological changes that alter the plasma proteome can directly result in changes in the PC. By forming disease-specific PCs on six NPs with varying physicochemical properties, a PC-based sensor array is developed for detection of CAD using specific PC pattern recognition. While the PC of a single NP may not provide the required specificity, it is reasoned that multivariate PCs across NPs with different surface chemistries, can provide the desirable information to selectively discriminate the condition under investigation. The results suggest that such an approach can detect CAD with an accuracy of 92.84%, a sensitivity of 87.5%, and a specificity of 82.5%. These new findings demonstrate the potential of PC-based sensor array detection systems for clinical use.
冠状动脉疾病(CAD)是最常见的心脏病类型,也是全球男性和女性死亡的主要原因。早期发现 CAD 对于降低死亡率、延长生存时间和提高患者生活质量至关重要。在此,描述了一种基于纳米颗粒的非侵入性诊断技术,该技术利用纳米生物界面中的蛋白质组变化来检测 CAD。暴露于生物流体中的纳米颗粒(NPs)在其表面吸附一层蛋白质,即“蛋白质冠”(PC)。改变血浆蛋白质组的病理变化可能直接导致 PC 的变化。通过在具有不同物理化学性质的六个 NPs 上形成针对特定疾病的 PCs,开发了基于 PC 的传感器阵列,用于使用特定的 PC 模式识别来检测 CAD。虽然单个 NP 的 PC 可能无法提供所需的特异性,但据认为,具有不同表面化学性质的 NPs 的多元 PCs 可以提供所需的信息,以选择性地区分所研究的条件。结果表明,这种方法可以以 92.84%的准确度、87.5%的灵敏度和 82.5%的特异性来检测 CAD。这些新发现证明了基于 PC 的传感器阵列检测系统在临床应用中的潜力。