Suppr超能文献

深入了解 DCLK 家族激酶中同工型特异性“超激发”的机制和进化观点。

Mechanistic and evolutionary insights into isoform-specific 'supercharging' in DCLK family kinases.

机构信息

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States.

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom.

出版信息

Elife. 2023 Oct 26;12:RP87958. doi: 10.7554/eLife.87958.

Abstract

Catalytic signaling outputs of protein kinases are dynamically regulated by an array of structural mechanisms, including allosteric interactions mediated by intrinsically disordered segments flanking the conserved catalytic domain. The doublecortin-like kinases (DCLKs) are a family of microtubule-associated proteins characterized by a flexible C-terminal autoregulatory 'tail' segment that varies in length across the various human DCLK isoforms. However, the mechanism whereby these isoform-specific variations contribute to unique modes of autoregulation is not well understood. Here, we employ a combination of statistical sequence analysis, molecular dynamics simulations, and in vitro mutational analysis to define hallmarks of DCLK family evolutionary divergence, including analysis of splice variants within the DCLK1 sub-family, which arise through alternative codon usage and serve to 'supercharge' the inhibitory potential of the DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other calcium calmodulin kinases (CAMKs), and a 'Swiss Army' assembly of distinct motifs that tether the C-terminal tail to conserved ATP and substrate-binding regions of the catalytic domain to generate a scaffold for autoregulation through C-tail dynamics. Consistently, deletions and mutations that alter C-terminal tail length or interfere with co-conserved interactions within the catalytic domain alter intrinsic protein stability, nucleotide/inhibitor binding, and catalytic activity, suggesting isoform-specific regulation of activity through alternative splicing. Our studies provide a detailed framework for investigating kinome-wide regulation of catalytic output through cis-regulatory events mediated by intrinsically disordered segments, opening new avenues for the design of mechanistically divergent DCLK1 modulators, stabilizers, or degraders.

摘要

蛋白激酶的催化信号输出受到一系列结构机制的动态调节,包括由固有无序片段介导的变构相互作用,这些片段位于保守的催化结构域的侧翼。双皮质素样激酶(DCLKs)是一类微管相关蛋白,其特征是具有柔性的 C 端自动调节“尾巴”片段,该片段在不同的人类 DCLK 同工型中长度不同。然而,这些同工型特异性变化如何导致独特的自动调节模式的机制尚不清楚。在这里,我们采用统计序列分析、分子动力学模拟和体外突变分析相结合的方法,定义了 DCLK 家族进化分歧的标志,包括对 DCLK1 亚家族内的剪接变体进行分析,这些变体通过不同的密码子使用产生,从而增强 DCLK1 C 端尾巴的抑制潜力。我们确定了易于区分 DCLKs 和所有其他钙调蛋白激酶(CAMKs)的共保守基序,以及一组独特的基序,这些基序将 C 端尾巴固定在催化结构域的保守 ATP 和底物结合区域上,形成通过 C 端尾巴动力学进行自动调节的支架。一致地,改变 C 端尾巴长度或干扰催化结构域内共保守相互作用的缺失和突变会改变蛋白质的固有稳定性、核苷酸/抑制剂结合和催化活性,表明通过选择性剪接对活性进行同工型特异性调节。我们的研究为通过固有无序片段介导的顺式调节事件研究整个激酶组对催化输出的调节提供了一个详细的框架,为设计具有不同机制的 DCLK1 调节剂、稳定剂或降解剂开辟了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b2b/10602587/b077875c1fb4/elife-87958-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验