Suppr超能文献

KinOrtho:一种在生命之树中映射人类激酶直系同源物并阐明研究不足的激酶的方法。

KinOrtho: a method for mapping human kinase orthologs across the tree of life and illuminating understudied kinases.

机构信息

Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA, 30602, USA.

PREP@UGA, University of Georgia, 500 D.W. Brooks Drive, Athens, GA, 30602, USA.

出版信息

BMC Bioinformatics. 2021 Sep 18;22(1):446. doi: 10.1186/s12859-021-04358-3.

Abstract

BACKGROUND

Protein kinases are among the largest druggable family of signaling proteins, involved in various human diseases, including cancers and neurodegenerative disorders. Despite their clinical relevance, nearly 30% of the 545 human protein kinases remain highly understudied. Comparative genomics is a powerful approach for predicting and investigating the functions of understudied kinases. However, an incomplete knowledge of kinase orthologs across fully sequenced kinomes severely limits the application of comparative genomics approaches for illuminating understudied kinases. Here, we introduce KinOrtho, a query- and graph-based orthology inference method that combines full-length and domain-based approaches to map one-to-one kinase orthologs across 17 thousand species.

RESULTS

Using multiple metrics, we show that KinOrtho performed better than existing methods in identifying kinase orthologs across evolutionarily divergent species and eliminated potential false positives by flagging sequences without a proper kinase domain for further evaluation. We demonstrate the advantage of using domain-based approaches for identifying domain fusion events, highlighting a case between an understudied serine/threonine kinase TAOK1 and a metabolic kinase PIK3C2A with high co-expression in human cells. We also identify evolutionary fission events involving the understudied OBSCN kinase domains, further highlighting the value of domain-based orthology inference approaches. Using KinOrtho-defined orthologs, Gene Ontology annotations, and machine learning, we propose putative biological functions of several understudied kinases, including the role of TP53RK in cell cycle checkpoint(s), the involvement of TSSK3 and TSSK6 in acrosomal vesicle localization, and potential functions for the ULK4 pseudokinase in neuronal development.

CONCLUSIONS

In sum, KinOrtho presents a novel query-based tool to identify one-to-one orthologous relationships across thousands of proteomes that can be applied to any protein family of interest. We exploit KinOrtho here to identify kinase orthologs and show that its well-curated kinome ortholog set can serve as a valuable resource for illuminating understudied kinases, and the KinOrtho framework can be extended to any protein-family of interest.

摘要

背景

蛋白激酶是信号蛋白中最大的可成药家族之一,参与多种人类疾病,包括癌症和神经退行性疾病。尽管它们具有临床相关性,但在 545 个人类蛋白激酶中,仍有近 30%的激酶研究得很少。比较基因组学是一种预测和研究研究较少的激酶功能的强大方法。然而,对完全测序的激酶组中的激酶同源物的不完全了解严重限制了比较基因组学方法在阐明研究较少的激酶中的应用。在这里,我们介绍了 KinOrtho,这是一种基于查询和图的同源物推断方法,它结合了全长和基于结构域的方法,在 17000 个物种中映射一对一的激酶同源物。

结果

使用多种度量标准,我们表明 KinOrtho 在识别进化上差异很大的物种中的激酶同源物方面表现优于现有方法,并通过标记没有适当激酶结构域的序列来消除潜在的假阳性,以便进一步评估。我们展示了使用基于结构域的方法来识别结构域融合事件的优势,突出了一个在研究较少的丝氨酸/苏氨酸激酶 TAOK1 和在人类细胞中高共表达的代谢激酶 PIK3C2A 之间的案例。我们还确定了涉及研究较少的 OBSCN 激酶结构域的进化分裂事件,进一步突出了基于结构域的同源物推断方法的价值。使用 KinOrtho 定义的同源物、基因本体论注释和机器学习,我们提出了几个研究较少的激酶的假设生物学功能,包括 TP53RK 在细胞周期检查点中的作用、TSSK3 和 TSSK6 在顶体囊泡定位中的参与以及 ULK4 假激酶在神经元发育中的潜在功能。

结论

总之,KinOrtho 提供了一种新的基于查询的工具,可用于在数千个蛋白质组中识别一对一的同源关系,可应用于任何感兴趣的蛋白质家族。我们在这里利用 KinOrtho 来识别激酶同源物,并表明其精心策划的激酶同源物集可作为阐明研究较少的激酶的有价值资源,并且 KinOrtho 框架可以扩展到任何感兴趣的蛋白质家族。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/720c/8449880/5d4ddf37a1c1/12859_2021_4358_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验