Yao Ze-Fan, Wu Hao-Tian, Zhuang Fang-Dong, Zhang Peng-Fei, Li Qi-Yi, Wang Jie-Yu, Pei Jian
Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
Ningbo Boya Poly Advanced Materials Co. Ltd., Ningbo, 315042, China.
Small. 2024 Apr;20(16):e2306010. doi: 10.1002/smll.202306010. Epub 2023 Oct 26.
Realizing ideal charge transport in field-effect transistors (FETs) of conjugated polymers is crucial for evaluating device performance, such as carrier mobility and practical applications of conjugated polymers. However, the current FETs using conjugated polymers as the active layers generally show certain non-ideal transport characteristics and poor stability. Here, ideal charge transport of n-type polymer FETs is achieved on flexible polyimide substrates by using an organic-inorganic hybrid double-layer dielectric. Deposited conjugated polymer films show highly ordered structures and low disorder, which are supported by grazing-incidence wide-angle X-ray scattering, near-edge X-ray absorption fine structure, and molecular dynamics simulations. Furthermore, the organic-inorganic hybrid double-layer dielectric provides low interfacial defects, leading to excellent charge transport in FETs with high electron mobility (1.49 ± 0.46 cm V s) and ideal reliability factors (102 ± 7%). Fabricated polymer FETs show a self-encapsulation effect, resulting in high stability of the FET charge transport. The polymer FETs still work with high mobility above 1 cm V s after storage in air for more than 300 days. Compared with state-of-the-art conjugated polymer FETs, this work simultaneously achieves ideal charge transport and environmental stability in n-type polymer FETs, facilitating rapid device optimization of high-performance polymer electronics.
在共轭聚合物场效应晶体管(FET)中实现理想的电荷传输对于评估器件性能(如载流子迁移率)以及共轭聚合物的实际应用至关重要。然而,目前以共轭聚合物作为有源层的FET通常表现出一定的非理想传输特性和较差的稳定性。在此,通过使用有机-无机混合双层电介质,在柔性聚酰亚胺基板上实现了n型聚合物FET的理想电荷传输。沉积的共轭聚合物薄膜呈现出高度有序的结构和低无序度,这得到了掠入射广角X射线散射、近边X射线吸收精细结构以及分子动力学模拟的支持。此外,有机-无机混合双层电介质提供了低界面缺陷,从而在具有高电子迁移率(1.49±0.46 cm² V⁻¹ s⁻¹)和理想可靠性因子(102±7%)的FET中实现了优异的电荷传输。制备的聚合物FET表现出自封装效应,导致FET电荷传输具有高稳定性。在空气中储存超过300天后,聚合物FET仍能以高于1 cm² V⁻¹ s⁻¹的高迁移率工作。与最先进的共轭聚合物FET相比,这项工作在n型聚合物FET中同时实现了理想的电荷传输和环境稳定性,有助于高性能聚合物电子器件的快速优化。