Gao Lei, Zhang Xinyu, Zhu Jinlong, Han Songbai, Zhang Hao, Wang Liping, Zhao Ruo, Gao Song, Li Shuai, Wang Yonggang, Huang Dubin, Zhao Yusheng, Zou Ruqiang
School of Materials Science and Engineering, Peking University, 100871, Beijing, China.
Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, China.
Nat Commun. 2023 Oct 26;14(1):6807. doi: 10.1038/s41467-023-42385-1.
Solid-state electrolytes with high ionic conductivities are crucial for the development of all-solid-state lithium batteries, and there is a strong correlation between the ionic conductivities and underlying lattice structures of solid-state electrolytes. Here, we report a lattice manipulation method of replacing [LiOH] clusters with potassium ions in antiperovskite solid-state electrolyte (LiOH)KCl, which leads to a remarkable increase in ionic conductivity (4.5 × 10 mS cm, 25 °C). Mechanistic analysis indicates that the lattice manipulation method leads to the stabilization of the cubic phase and lattice contraction for the antiperovskite, and causes significant changes in Li-ion transport trajectories and migration barriers. Also, the Li||LiFePO all-solid-state battery (excess Li and loading of 1.78 mg cm for LiFePO) employing (LiOH)KCl electrolyte delivers a specific capacity of 116.4 mAh g at the 150th cycle with a capacity retention of 96.1% at 80 mA g and 120 °C, which indicates potential application prospects of antiperovskite electrolyte in all-solid-state lithium batteries.
具有高离子电导率的固态电解质对于全固态锂电池的发展至关重要,并且固态电解质的离子电导率与其底层晶格结构之间存在密切关联。在此,我们报道了一种在反钙钛矿固态电解质(LiOH)KCl中用钾离子取代[LiOH]簇的晶格调控方法,这导致离子电导率显著提高(4.5×10 mS cm,25 °C)。机理分析表明,该晶格调控方法导致反钙钛矿的立方相稳定和晶格收缩,并引起锂离子传输轨迹和迁移势垒的显著变化。此外,采用(LiOH)KCl电解质的Li||LiFePO全固态电池(过量Li,LiFePO的负载量为1.78 mg cm)在第150次循环时的比容量为116.4 mAh g,在80 mA g和120 °C下容量保持率为96.1%,这表明反钙钛矿电解质在全固态锂电池中具有潜在的应用前景。