Ito Daisuke, Kuwata Naoaki, Takemoto Seiji, Kamiguchi Kazuhiro, Hasegawa Gen, Takada Kazunori
Murata Manufacturing Co., Ltd., Nagaokakyo-shi, Kyoto, Japan.
Research Center for Energy and Environmental Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
Nat Commun. 2025 Aug 9;16(1):7372. doi: 10.1038/s41467-025-62860-1.
Inorganic solid electrolytes have emerged as promising candidates for realizing all-solid-state batteries because they eliminate flammable, low boiling-point liquids in lithium-ion battery cells, improving safety and cycle life. In this study, we present a highly lattice-matched composite solid electrolyte consisting of an antiperovskite-perovskite system, offering the benefits of both antiperovskites as melt-infiltratable solid electrolytes and perovskites as fast-ion conductors. Atomistic simulations predict significant lithium-ion diffusion at the interface between cubic LiOHCl and LiLaTiO. The incorporation of fluorine enables room-temperature operation by stabilizing the high-temperature cubic phase of LiOHClF and reduces the lattice mismatch ratio to 0.8% at the interface through lattice contractions. The composite solid electrolyte was synthesized via pressure-assisted melt infiltration. The solid electrolyte effectively infiltrates conventional lithium-ion battery electrodes while maintaining a stable interface structure. Electrochemical testing demonstrates promising charge-discharge characteristics, including long cycle life and rate performance. Intricate infiltration of the solid electrolyte into an electrode structure composed of active materials with microcracks and high surface area enables stable operation by mitigating degradation phenomena typically observed in liquid electrolyte-based lithium-ion batteries.
无机固体电解质已成为实现全固态电池的有前景的候选材料,因为它们消除了锂离子电池中的易燃、低沸点液体,提高了安全性和循环寿命。在本研究中,我们展示了一种由反钙钛矿-钙钛矿体系组成的高度晶格匹配的复合固体电解质,兼具反钙钛矿作为可熔融渗透固体电解质和钙钛矿作为快离子导体的优点。原子模拟预测在立方LiOHCl和LiLaTiO的界面处锂离子有显著扩散。氟的引入通过稳定LiOHClF的高温立方相实现室温运行,并通过晶格收缩将界面处的晶格失配率降低至0.8%。复合固体电解质通过压力辅助熔融渗透法合成。该固体电解质能有效渗透到传统锂离子电池电极中,同时保持稳定的界面结构。电化学测试表明其具有良好的充放电特性,包括长循环寿命和倍率性能。固体电解质复杂地渗透到由具有微裂纹和高表面积的活性材料组成的电极结构中,通过减轻通常在基于液体电解质的锂离子电池中观察到的降解现象实现稳定运行。