Mahgoub Hany, Aldehim Ghadah, Almalki Nabil Sharaf, Issaoui Imène, Mahmud Ahmed, Alneil Amani A
Department of Computer Science, College of Science & Art at Mahayil, King Khalid University, Muhayil 61321, Saudi Arabia.
Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Biomimetics (Basel). 2023 Oct 18;8(6):493. doi: 10.3390/biomimetics8060493.
Food image classification, an interesting subdomain of Computer Vision (CV) technology, focuses on the automatic classification of food items represented through images. This technology has gained immense attention in recent years thanks to its widespread applications spanning dietary monitoring and nutrition studies to restaurant recommendation systems. By leveraging the developments in Deep-Learning (DL) techniques, especially the Convolutional Neural Network (CNN), food image classification has been developed as an effective process for interacting with and understanding the nuances of the culinary world. The deep CNN-based automated food image classification method is a technology that utilizes DL approaches, particularly CNNs, for the automatic categorization and classification of the images of distinct kinds of foods. The current research article develops a Bio-Inspired Spotted Hyena Optimizer with a Deep Convolutional Neural Network-based Automated Food Image Classification (SHODCNN-FIC) approach. The main objective of the SHODCNN-FIC method is to recognize and classify food images into distinct types. The presented SHODCNN-FIC technique exploits the DL model with a hyperparameter tuning approach for the classification of food images. To accomplish this objective, the SHODCNN-FIC method exploits the DCNN-based Xception model to derive the feature vectors. Furthermore, the SHODCNN-FIC technique uses the SHO algorithm for optimal hyperparameter selection of the Xception model. The SHODCNN-FIC technique uses the Extreme Learning Machine (ELM) model for the detection and classification of food images. A detailed set of experiments was conducted to demonstrate the better food image classification performance of the proposed SHODCNN-FIC technique. The wide range of simulation outcomes confirmed the superior performance of the SHODCNN-FIC method over other DL models.
食品图像分类是计算机视觉(CV)技术中一个有趣的子领域,专注于对通过图像呈现的食品进行自动分类。由于其广泛的应用,从饮食监测和营养研究到餐厅推荐系统,这项技术近年来受到了极大的关注。通过利用深度学习(DL)技术的发展,特别是卷积神经网络(CNN),食品图像分类已发展成为一种与烹饪世界进行交互并理解其细微差别的有效方法。基于深度卷积神经网络的自动食品图像分类方法是一种利用DL方法,特别是卷积神经网络,对不同种类食品的图像进行自动分类的技术。当前的研究文章开发了一种基于深度卷积神经网络的自动食品图像分类的生物启发式斑鬣狗优化器(SHODCNN - FIC)方法。SHODCNN - FIC方法的主要目标是将食品图像识别并分类为不同类型。所提出的SHODCNN - FIC技术利用超参数调整方法的DL模型对食品图像进行分类。为了实现这一目标,SHODCNN - FIC方法利用基于深度卷积神经网络的Xception模型来导出特征向量。此外,SHODCNN - FIC技术使用斑鬣狗优化算法对Xception模型进行最优超参数选择。SHODCNN - FIC技术使用极限学习机(ELM)模型对食品图像进行检测和分类。进行了一系列详细的实验来证明所提出的SHODCNN - FIC技术具有更好的食品图像分类性能。广泛的模拟结果证实了SHODCNN - FIC方法相对于其他DL模型的优越性能。