Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Po Box 103786, 11543, Riyadh, Saudi Arabia.
Sci Rep. 2024 Aug 24;14(1):19713. doi: 10.1038/s41598-024-70525-0.
Laryngeal cancer exhibits a notable global health burden, with later-stage detection contributing to a low mortality rate. Laryngeal cancer diagnosis on throat region images is a pivotal application of computer vision (CV) and medical image diagnoses in the medical sector. It includes detecting and analysing abnormal or cancerous tissue from the larynx, an integral part of the vocal and respiratory systems. The computer-aided system makes use of artificial intelligence (AI) through deep learning (DL) and machine learning (ML) models, including convolution neural networks (CNN), for automated disease diagnoses and detection. Various DL and ML approaches are executed to categorize the extraction feature as healthy and cancerous tissues. This article introduces an automated Laryngeal Cancer Diagnosis using the Dandelion Optimizer Algorithm with Ensemble Learning (LCD-DOAEL) method on Biomedical Throat Region Image. The LCD-DOAEL method aims to investigate the images of the throat region for the presence of laryngeal cancer. In the LCD-DOAEL method, the Gaussian filtering (GF) approach is applied to eliminate the noise in the biomedical images. Besides, the complex and intrinsic feature patterns can be extracted by the MobileNetv2 model. Meanwhile, the DOA model carries out the hyperparameter selection of MobileNetV2 architecture. Finally, the ensemble of three classifiers such as bidirectional long short-term memory (BiLSTM), regularized extreme learning machine (ELM), and backpropagation neural network (BPNN) models, are utilized for the classification process. A comprehensive set of simulations is conducted on the biomedical image dataset to highlight the efficient performance of the LCD-DOAEL technique. The comparison analysis of the LCD-DOAEL method exhibited a superior accuracy outcome of 97.54% over other existing techniques.
喉癌在全球范围内造成了显著的健康负担,由于晚期检测,其死亡率较低。喉癌的诊断主要依靠喉部的影像学检查,这是计算机视觉(CV)和医学图像诊断在医疗领域的重要应用。它包括检测和分析喉部的异常或癌变组织,这是声音和呼吸系统的重要组成部分。计算机辅助系统利用人工智能(AI)通过深度学习(DL)和机器学习(ML)模型,包括卷积神经网络(CNN),实现疾病的自动诊断和检测。各种 DL 和 ML 方法可用于对提取的特征进行分类,以区分健康组织和癌变组织。本文提出了一种基于 Dandelion Optimizer Algorithm with Ensemble Learning(LCD-DOAEL)的自动化喉癌诊断方法,用于生物医学喉部图像。该方法旨在利用计算机对喉部图像进行分析,以检测是否存在喉癌。在 LCD-DOAEL 方法中,应用高斯滤波(GF)方法消除生物医学图像中的噪声。此外,MobileNetv2 模型可提取复杂的内在特征模式。同时,DOA 模型用于选择 MobileNetV2 架构的超参数。最后,利用双向长短期记忆(BiLSTM)、正则化极限学习机(ELM)和反向传播神经网络(BPNN)三种分类器的集成进行分类过程。在生物医学图像数据集上进行了全面的模拟实验,以突出该方法的高效性能。与其他现有技术相比,LCD-DOAEL 方法的比较分析显示出 97.54%的更高准确性结果。