Suppr超能文献

基于深度神经网络的食物图像分类与营养成分识别:系统综述。

Deep neural network for food image classification and nutrient identification: A systematic review.

机构信息

Department of Computer Science & Engineering, Chandigarh University, Punjab, India.

出版信息

Rev Endocr Metab Disord. 2023 Aug;24(4):633-653. doi: 10.1007/s11154-023-09795-4. Epub 2023 Mar 28.

Abstract

Technology impacts human life in both the aspects such as positive and negative, which helps in better communication and eliminating geographical boundaries. However, social media and mobile devices may lead to severe health conditions such as sleep problems, depression, obesity, etc. A systematic review is conducted to analyze health issues by tracking food intake by considering positive aspects using Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Guidelines. The major scientific databases (such as Web of Science, Scopus, and IEEE explore) are explored to search the image recognition and analysis articles. The search query is applied to the databases using keywords like "Food Image," "Food Image Classification," "Nutrient Identification," "Nutrient Estimation," and using "Machine Learning," etc. 771 articles are extracted from these databases, and 56 are identified for final consideration after rigorous screening. A few investigations are extracted based on available food image datasets, hyperparameters tuning, a technique used, performance metrics, and challenges of Food Image Classification (FIC). This study discusses different investigations with their proposed FIC and nutrient estimation solution. Finally, this intensive research presents a case study using FIC and object detection techniques to estimate nutrition with food image analysis.

摘要

技术在积极和消极两方面都影响着人类生活,它有助于更好的沟通和消除地理界限。然而,社交媒体和移动设备可能会导致严重的健康问题,如睡眠问题、抑郁、肥胖等。本研究通过使用系统评价和荟萃分析(PRISMA)指南来跟踪食物摄入量,从积极方面考虑,进行系统评价来分析健康问题。主要科学数据库(如 Web of Science、Scopus 和 IEEE Explore)被用于搜索图像识别和分析文章。使用“Food Image”、“Food Image Classification”、“Nutrient identification”、“Nutrient Estimation”等关键词以及“Machine Learning”等技术在数据库中应用搜索查询。从这些数据库中提取了 771 篇文章,并经过严格筛选后确定了 56 篇最终考虑的文章。根据可用的食物图像数据集、超参数调整、使用的技术、性能指标和食物图像分类(FIC)的挑战,提取了一些研究。本研究讨论了不同的研究及其提出的 FIC 和营养估计解决方案。最后,本研究通过使用 FIC 和目标检测技术对食物图像分析进行营养估计的案例研究,对这一深入研究进行了总结。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验