Suppr超能文献

基于人工大猩猩优化器和迁移学习的超声图像胆囊癌自动检测。

Automated gall bladder cancer detection using artificial gorilla troops optimizer with transfer learning on ultrasound images.

机构信息

Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.

Department of Biomedical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2024 Sep 19;14(1):21845. doi: 10.1038/s41598-024-72880-4.

Abstract

The gallbladder (GB) is a small pouch and a deep tissue placed under the liver. GB Cancer (GBC) is a deadly illness that is complex to discover in an initial phase. Initial diagnosis can significantly enhance the existence rate. Non-ionizing energy, low cost, and convenience make the US a general non-invasive analytical modality for patients with GB diseases. Automatic recognition of GBC from US imagery is a significant issue that has gained much attention from researchers. Recently, machine learning (ML) techniques dependent on convolutional neural network (CNN) architectures have prepared transformational growth in radiology and medical analysis for illnesses like lung, pancreatic, breast, and melanoma. Deep learning (DL) is a region of artificial intelligence (AI), a functional medical tomography model that can help in the initial analysis of GBC. This manuscript presents an Automated Gall Bladder Cancer Detection using an Artificial Gorilla Troops Optimizer with Transfer Learning (GBCD-AGTOTL) technique on Ultrasound Images. The GBCD-AGTOTL technique examines the US images for the presence of gall bladder cancer using the DL model. In the initial stage, the GBCD-AGTOTL technique preprocesses the US images using a median filtering (MF) approach. The GBCD-AGTOTL technique applies the Inception module for feature extraction, which learns the complex and intrinsic patterns in the pre-processed image. Besides, the AGTO algorithm-based hyperparameter tuning procedure takes place, which optimally picks the hyperparameter values of the Inception technique. Lastly, the bidirectional gated recurrent unit (BiGRU) model helps classify gall bladder cancer. A series of simulation analyses were performed to ensure the performance of the GBCD-AGTOTL technique on the GBC dataset. The experimental outcomes inferred the enhanced abilities of the GBCD-AGTOTL in detecting gall bladder cancer.

摘要

胆囊(GB)是一个小袋状结构,位于肝脏下方。胆囊癌(GBC)是一种难以在早期发现的致命疾病。早期诊断可以显著提高生存率。非电离能量、低成本和便利性使 US 成为 GB 疾病患者的一种常规非侵入性分析方式。从 US 图像中自动识别 GBC 是一个重要问题,引起了研究人员的广泛关注。最近,基于卷积神经网络(CNN)架构的机器学习(ML)技术在放射学和医学分析领域为肺癌、胰腺癌、乳腺癌和黑色素瘤等疾病带来了变革性的发展。深度学习(DL)是人工智能(AI)的一个领域,一种功能医学断层摄影模型,可以帮助初步分析 GBC。本文提出了一种基于人工大猩猩部队优化器与迁移学习(GBCD-AGTOTL)技术的自动胆囊癌检测方法,用于超声图像。GBCD-AGTOTL 技术使用 DL 模型检查 US 图像中是否存在胆囊癌。在初始阶段,GBCD-AGTOTL 技术使用中值滤波(MF)方法对 US 图像进行预处理。GBCD-AGTOTL 技术应用 Inception 模块进行特征提取,该模块学习预处理图像中的复杂和内在模式。此外,还进行了基于 AGTO 算法的超参数调整过程,该过程可以最优地选择 Inception 技术的超参数值。最后,双向门控循环单元(BiGRU)模型有助于对胆囊癌进行分类。进行了一系列模拟分析,以确保 GBCD-AGTOTL 技术在 GBC 数据集上的性能。实验结果推断出 GBCD-AGTOTL 在检测胆囊癌方面的增强能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8bc/11413303/d4e9f2ac254c/41598_2024_72880_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验