文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Burgeoning Single-Atom Nanozymes for Efficient Bacterial Elimination.

作者信息

Shi Tongyu, Cui Yuanyuan, Yuan Huanxiang, Qi Ruilian, Yu Yu

机构信息

Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.

School of Science, Beijing Jiaotong University, Beijing 100044, China.

出版信息

Nanomaterials (Basel). 2023 Oct 14;13(20):2760. doi: 10.3390/nano13202760.


DOI:10.3390/nano13202760
PMID:37887911
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10609188/
Abstract

To fight against antibacterial-resistant bacteria-induced infections, the development of highly efficient antibacterial agents with a low risk of inducing resistance is exceedingly urgent. Nanozymes can rapidly kill bacteria with high efficiency by generating reactive oxygen species via enzyme-mimetic catalytic reactions, making them promising alternatives to antibiotics for antibacterial applications. However, insufficient catalytic activity greatly limits the development of nanozymes to eliminate bacterial infection. By increasing atom utilization to the maximum, single-atom nanozymes (SAzymes) with an atomical dispersion of active metal sites manifest superior enzyme-like activities and have achieved great results in antibacterial applications in recent years. In this review, the latest advances in antibacterial SAzymes are summarized, with specific attention to the action mechanism involved in antibacterial applications covering wound disinfection, osteomyelitis treatment, and marine antibiofouling. The remaining challenges and further perspectives of SAzymes for practical antibacterial applications are also discussed.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/4b8f4ac0a1fd/nanomaterials-13-02760-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/48ef6119907b/nanomaterials-13-02760-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/9a94b900e258/nanomaterials-13-02760-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/06148e1f3c51/nanomaterials-13-02760-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/9c2fe3ce5469/nanomaterials-13-02760-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/93f9b61966f7/nanomaterials-13-02760-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/24ac35ac104a/nanomaterials-13-02760-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/884831554f42/nanomaterials-13-02760-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/fec6ef7e13e3/nanomaterials-13-02760-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/8b8da3d1b3b8/nanomaterials-13-02760-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/ffe295b342a5/nanomaterials-13-02760-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/ae4633bc584f/nanomaterials-13-02760-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/fbe18314f1ee/nanomaterials-13-02760-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/4b8f4ac0a1fd/nanomaterials-13-02760-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/48ef6119907b/nanomaterials-13-02760-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/9a94b900e258/nanomaterials-13-02760-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/06148e1f3c51/nanomaterials-13-02760-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/9c2fe3ce5469/nanomaterials-13-02760-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/93f9b61966f7/nanomaterials-13-02760-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/24ac35ac104a/nanomaterials-13-02760-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/884831554f42/nanomaterials-13-02760-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/fec6ef7e13e3/nanomaterials-13-02760-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/8b8da3d1b3b8/nanomaterials-13-02760-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/ffe295b342a5/nanomaterials-13-02760-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/ae4633bc584f/nanomaterials-13-02760-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/fbe18314f1ee/nanomaterials-13-02760-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4333/10609188/4b8f4ac0a1fd/nanomaterials-13-02760-g012.jpg

相似文献

[1]
Burgeoning Single-Atom Nanozymes for Efficient Bacterial Elimination.

Nanomaterials (Basel). 2023-10-14

[2]
Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial.

Molecules. 2022-8-25

[3]
Engineering Single-Atom Nanozymes for Catalytic Biomedical Applications.

Small. 2023-7

[4]
Single-atom nanozymes for antibacterial applications.

Food Chem. 2024-10-30

[5]
Single-Atom Nanozymes for Biomedical Applications: Recent Advances and Challenges.

Chem Asian J. 2022-4-1

[6]
Single atom nanozymes for bacterial infection therapy.

Biomater Sci. 2023-12-19

[7]
Single-atom nanozymes for biological applications.

Biomater Sci. 2020-12-7

[8]
Emerging antibacterial nanozymes for wound healing.

Smart Med. 2023-2-19

[9]
Progress in antibacterial applications of nanozymes.

Front Chem. 2024-9-23

[10]
Cluster Nanozymes with Optimized Reactivity and Utilization of Active Sites for Effective Peroxidase (and Oxidase) Mimicking.

Small. 2022-2

引用本文的文献

[1]
Ultra-Small Iron-Based Nanoparticles with Mild Photothermal-Enhanced Cascade Enzyme-Mimic Reactions for Tumor Therapy.

Materials (Basel). 2025-4-3

[2]
A Colorimetric and Fluorescent Dual-Mode Sensor Based on a Smartphone-Assisted Laccase-like Nanoenzyme for the Detection of Tetracycline Antibiotics.

Nanomaterials (Basel). 2025-1-22

[3]
The potential use of nanozymes as an antibacterial agents in oral infection, periodontitis, and peri-implantitis.

J Nanobiotechnology. 2024-4-25

本文引用的文献

[1]
Spatial Position Regulation of Cu Single Atom Site Realizes Efficient Nanozyme Photocatalytic Bactericidal Activity.

Adv Mater. 2023-11

[2]
A Bioinspired Atomically Thin Nanodot Supported Single-Atom Nanozyme for Antibacterial Textile Coating.

Small. 2023-11

[3]
Tailoring the Surface and Composition of Nanozymes for Enhanced Bacterial Binding and Antibacterial Activity.

Small. 2023-10

[4]
Copper-Zinc Bimetallic Single-Atom Catalysts with Localized Surface Plasmon Resonance-Enhanced Photothermal Effect and Catalytic Activity for Melanoma Treatment and Wound-Healing.

Adv Sci (Weinh). 2023-6

[5]
Engineering Cell Membrane-Cloaked Catalysts as Multifaceted Artificial Peroxisomes for Biomedical Applications.

Adv Sci (Weinh). 2023-6

[6]
Engineering Single-Atom Nanozymes for Catalytic Biomedical Applications.

Small. 2023-7

[7]
Alternative Copper-Based Single-Atom Nanozyme with Superior Multienzyme Activities and NIR-II Responsiveness to Fight against Deep Tissue Infections.

Research (Wash D C). 2023

[8]
Modulating the local coordination environment of cobalt single-atomic nanozymes for enhanced catalytic therapy against bacteria.

Acta Biomater. 2023-7-1

[9]
Designing Single-Atom Active Sites on sp -Carbon Linked Covalent Organic Frameworks to Induce Bacterial Ferroptosis-Like for Robust Anti-Infection Therapy.

Adv Sci (Weinh). 2023-5

[10]
Tuning Local Coordination Environments of Manganese Single-Atom Nanozymes with Multi-Enzyme Properties for Selective Colorimetric Biosensing.

Angew Chem Int Ed Engl. 2023-4-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索