Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway.
Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo 0372, Norway.
Gigascience. 2022 Dec 28;12. doi: 10.1093/gigascience/giad091. Epub 2023 Oct 27.
Single-cell RNA sequencing (scRNA-seq) provides high-resolution transcriptome data to understand the heterogeneity of cell populations at the single-cell level. The analysis of scRNA-seq data requires the utilization of numerous computational tools. However, nonexpert users usually experience installation issues, a lack of critical functionality or batch analysis modes, and the steep learning curves of existing pipelines.
We have developed cellsnake, a comprehensive, reproducible, and accessible single-cell data analysis workflow, to overcome these problems. Cellsnake offers advanced features for standard users and facilitates downstream analyses in both R and Python environments. It is also designed for easy integration into existing workflows, allowing for rapid analyses of multiple samples.
As an open-source tool, cellsnake is accessible through Bioconda, PyPi, Docker, and GitHub, making it a cost-effective and user-friendly option for researchers. By using cellsnake, researchers can streamline the analysis of scRNA-seq data and gain insights into the complex biology of single cells.
单细胞 RNA 测序(scRNA-seq)提供了高分辨率转录组数据,可在单细胞水平上了解细胞群体的异质性。scRNA-seq 数据的分析需要利用大量的计算工具。但是,非专业用户通常会遇到安装问题、关键功能或批处理分析模式的缺乏,以及现有管道陡峭的学习曲线。
我们开发了 cellsnake,这是一个全面、可重现且易于使用的单细胞数据分析工作流程,以克服这些问题。cellsnake 为标准用户提供了高级功能,并在 R 和 Python 环境中方便了下游分析。它还设计用于轻松集成到现有工作流程中,允许快速分析多个样本。
作为一个开源工具,cellsnake 可以通过 Bioconda、PyPi、Docker 和 GitHub 获得,对于研究人员来说是一种具有成本效益且用户友好的选择。通过使用 cellsnake,研究人员可以简化 scRNA-seq 数据的分析,并深入了解单细胞的复杂生物学。