Ferrena Alexander, Zheng Xiang Yu, Jackson Kevyn, Hoang Bang, Morrow Bernice, Zheng Deyou
Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA.
bioRxiv. 2024 May 9:2024.05.06.592708. doi: 10.1101/2024.05.06.592708.
Single-cell transcriptomics profiling has increasingly been used to evaluate cross-group differences in cell population and cell-type gene expression. This often leads to large datasets with complex experimental designs that need advanced comparative analysis. Concurrently, bioinformatics software and analytic approaches also become more diverse and constantly undergo improvement. Thus, there is an increased need for automated and standardized data processing and analysis pipelines, which should be efficient and flexible too. To address these, we develop the ingle-ell ifferential nalysis and rocessing ipeline (scDAPP), a R-based workflow for comparative analysis of single cell (or nucleus) transcriptomic data between two or more groups and at the levels of single cells or "pseudobulking" samples. The pipeline automates many steps of pre-processing using data-learnt parameters, uses previously benchmarked software, and generates comprehensive intermediate data and final results that are valuable for both beginners and experts of scRNA-seq analysis. Moreover, the analytic reports, augmented by extensive data visualization, increase the transparency of computational analysis and parameter choices, while facilitate users to go seamlessly from raw data to biological interpretation. : scDAPP is freely available for non-commercial usage as an R package under the MIT license. Source code, documentation and sample data are available at the GitHub (https://github.com/bioinfoDZ/scDAPP).
单细胞转录组学分析越来越多地用于评估细胞群体和细胞类型基因表达的跨组差异。这通常会产生具有复杂实验设计的大型数据集,需要先进的比较分析。与此同时,生物信息学软件和分析方法也变得更加多样化,并不断改进。因此,对自动化和标准化的数据处理与分析流程的需求日益增加,这些流程还应高效且灵活。为了解决这些问题,我们开发了单细胞差异分析与处理流程(scDAPP),这是一种基于R的工作流程,用于在两个或更多组之间以及在单细胞或“伪批量”样本水平上对单细胞(或细胞核)转录组数据进行比较分析。该流程使用数据学习参数自动执行预处理的许多步骤,使用先前经过基准测试的软件,并生成对scRNA-seq分析的初学者和专家都有价值的全面中间数据和最终结果。此外,通过广泛的数据可视化增强的分析报告提高了计算分析和参数选择的透明度,同时便于用户从原始数据无缝过渡到生物学解释。scDAPP作为一个R包,根据MIT许可免费提供用于非商业用途。源代码、文档和示例数据可在GitHub(https://github.com/bioinfoDZ/scDAPP)上获取。