Department of Radiology, Chongqing University Cancer Hospital, Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing 400030, China.
School of Medicine, Chongqing University, Chongqing 400030, China.
Magn Reson Imaging. 2024 Jan;105:37-45. doi: 10.1016/j.mri.2023.10.010. Epub 2023 Oct 27.
To evaluate the predictive performance of multiparameter and histogram features derived from amide proton transfer-weighted imaging (APTWI), intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) for histopathological types of breast tumors.
Region of interest (ROI) was delineated by outlining the largest slice of the tumor on the false-color images of the DKI, IVIM and APTWI parameters, and extracted the histogram features. Receiver operating characteristic (ROC) curve was used to evaluate the performance of parameters in predicting benign and malignant breast lesions, molecular prognostic biomarkers, lymph node status, and subtypes of breast lesions. The Spearman correlation coefficient was used to determine the correlations between each parameter and clinical-pathological factors.
All 52 breast lesions were enrolled in this prospective study, including 8 benign lesions and 44 breast cancers. To diagnose malignant and benign breast lesions, the value of APT performed best, with the AUC reaching 0.983. According to the different imaging methods, the APTWI performed best. To predict the positive status of ER, PR, Ki67, the value of D, D, f performed best, with the AUC values reaching 0.743, 0.770, 0.848, respectively. For the identification of Luminal B, HER2-enriched, and TNBC breast cancers, K, f , and D performed best, with AUC values reaching 0.679, 0.826, 0.771, respectively.
This study found the APTWI, IVIM and DKI parameters could diagnose breast cancer. The histogram features of DKI and IVIM, based on tumor heterogeneity, may help to predict breast cancer subtypes.
评估酰胺质子转移加权成像(APTWI)、体素内不相干运动(IVIM)和扩散峰度成像(DKI)的多参数和直方图特征在预测乳腺肿瘤组织学类型方面的预测性能。
在 DKI、IVIM 和 APTWI 参数的假彩色图像上勾画肿瘤的最大切片,勾画感兴趣区(ROI),并提取直方图特征。采用受试者工作特征(ROC)曲线评估参数预测良性和恶性乳腺病变、分子预后生物标志物、淋巴结状态和乳腺病变亚型的性能。采用 Spearman 相关系数确定各参数与临床病理因素之间的相关性。
本前瞻性研究共纳入 52 例乳腺病变,包括 8 例良性病变和 44 例乳腺癌。为了诊断恶性和良性乳腺病变,APT 的值表现最佳,AUC 达到 0.983。根据不同的成像方法,APTWI 的表现最佳。预测 ER、PR、Ki67 的阳性状态时,D、D、f 的值表现最佳,AUC 值分别达到 0.743、0.770、0.848。对于识别 Luminal B、HER2 富集和三阴性乳腺癌,K、f 和 D 的值表现最佳,AUC 值分别达到 0.679、0.826、0.771。
本研究发现 APTWI、IVIM 和 DKI 参数可用于诊断乳腺癌。DKI 和 IVIM 的直方图特征基于肿瘤异质性,可能有助于预测乳腺癌亚型。