Suppr超能文献

糖尿病感知:一种基于物联网的非侵入式多传感器呼气糖尿病预诊断系统。

DiabeticSense: A Non-Invasive, Multi-Sensor, IoT-Based Pre-Diagnostic System for Diabetes Detection Using Breath.

作者信息

Kapur Ritu, Kumar Yashwant, Sharma Swati, Rastogi Vedant, Sharma Shivani, Kanwar Vikrant, Sharma Tarun, Bhavsar Arnav, Dutt Varun

机构信息

Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Kamand 175075, Himachal Pradesh, India.

All India Institute of Medical Science Bilaspur, Noa 174001, Himachal Pradesh, India.

出版信息

J Clin Med. 2023 Oct 10;12(20):6439. doi: 10.3390/jcm12206439.

Abstract

Diabetes mellitus is a widespread chronic metabolic disorder that requires regular blood glucose level surveillance. Current invasive techniques, such as finger-prick tests, often result in discomfort, leading to infrequent monitoring and potential health complications. The primary objective of this study was to design a novel, portable, non-invasive system for diabetes detection using breath samples, named DiabeticSense, an affordable digital health device for early detection, to encourage immediate intervention. The device employed electrochemical sensors to assess volatile organic compounds in breath samples, whose concentrations differed between diabetic and non-diabetic individuals. The system merged vital signs with sensor voltages obtained by processing breath sample data to predict diabetic conditions. Our research used clinical breath samples from 100 patients at a nationally recognized hospital to form the dataset. Data were then processed using a gradient boosting classifier model, and the performance was cross-validated. The proposed system attained a promising accuracy of 86.6%, indicating an improvement of 20.72% over an existing regression technique. The developed device introduces a non-invasive, cost-effective, and user-friendly solution for preliminary diabetes detection. This has the potential to increase patient adherence to regular monitoring.

摘要

糖尿病是一种普遍存在的慢性代谢紊乱疾病,需要定期监测血糖水平。当前的侵入性技术,如手指采血检测,常常会带来不适,导致监测不频繁以及潜在的健康并发症。本研究的主要目的是设计一种新型的、便携式的、用于通过呼吸样本检测糖尿病的非侵入性系统,名为糖尿病感知仪(DiabeticSense),这是一种用于早期检测的经济实惠的数字健康设备,以鼓励立即进行干预。该设备采用电化学传感器来评估呼吸样本中的挥发性有机化合物,糖尿病患者和非糖尿病患者呼出的这些化合物的浓度有所不同。该系统将生命体征与通过处理呼吸样本数据获得的传感器电压相结合,以预测糖尿病状况。我们的研究使用了一家全国知名医院100名患者的临床呼吸样本组成数据集。然后使用梯度提升分类器模型对数据进行处理,并对性能进行交叉验证。所提出的系统达到了86.6%的可观准确率,比现有的回归技术提高了20.72%。所开发的设备为糖尿病初步检测引入了一种非侵入性、经济高效且用户友好的解决方案。这有可能提高患者对定期监测的依从性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc71/10607308/d68cacf0d332/jcm-12-06439-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验