文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于早期干眼筛查与检测的即时护理移动健康应用程序的设计与可用性研究

Design and Usability Study of a Point of Care mHealth App for Early Dry Eye Screening and Detection.

作者信息

Zhang Sydney, Echegoyen Julio

机构信息

Department of Clinical Research, Westview Eye Institute, San Diego, CA 92129, USA.

出版信息

J Clin Med. 2023 Oct 12;12(20):6479. doi: 10.3390/jcm12206479.


DOI:10.3390/jcm12206479
PMID:37892616
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10607458/
Abstract

Significantly increased eye blink rate and partial blinks have been well documented in patients with dry eye disease (DED), a multifactorial eye disorder with few effective methods for clinical diagnosis. In this study, a point of care mHealth App named "EyeScore" was developed, utilizing blink rate and patterns as early clinical biomarkers for DED. EyeScore utilizes an iPhone for a 1-min in-app recording of eyelid movements. The use of facial landmarks, eye aspect ratio (EAR) and derivatives enabled a comprehensive analysis of video frames for the determination of eye blink rate and partial blink counts. Smartphone videos from ten DED patients and ten non-DED controls were analyzed to optimize EAR-based thresholds, with eye blink and partial blink results in excellent agreement with manual counts. Importantly, a clinically relevant algorithm for the calculation of "eye healthiness score" was created, which took into consideration eye blink rate, partial blink counts as well as other demographic and clinical risk factors for DED. This 10-point score can be conveniently measured anytime with non-invasive manners and successfully led to the identification of three individuals with DED conditions from ten non-DED controls. Thus, EyeScore can be validated as a valuable mHealth App for early DED screening, detection and treatment monitoring.

摘要

干眼症(DED)患者眨眼率显著增加以及出现部分眨眼现象已有充分记录,干眼症是一种多因素眼部疾病,临床诊断的有效方法较少。在本研究中,开发了一款名为“EyeScore”的即时医疗移动健康应用程序,将眨眼率和模式作为干眼症的早期临床生物标志物。EyeScore利用iPhone在应用程序内进行1分钟的眼睑运动记录。通过使用面部标志、眼宽高比(EAR)及其导数,能够对视频帧进行全面分析,以确定眨眼率和部分眨眼次数。分析了十名干眼症患者和十名非干眼症对照者的智能手机视频,以优化基于EAR的阈值,眨眼和部分眨眼结果与人工计数结果高度一致。重要的是,创建了一种用于计算“眼部健康评分”的临床相关算法,该算法考虑了眨眼率、部分眨眼次数以及其他干眼症的人口统计学和临床风险因素。这个10分制评分可以通过非侵入性方式在任何时候方便地测量,并成功地从十名非干眼症对照者中识别出三名患有干眼症的个体。因此,EyeScore可被验证为一款用于早期干眼症筛查、检测和治疗监测的有价值的移动健康应用程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dde/10607458/f695cbe59a42/jcm-12-06479-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dde/10607458/b1799d2e4ab1/jcm-12-06479-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dde/10607458/0af239ec7881/jcm-12-06479-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dde/10607458/f149c7fe52c6/jcm-12-06479-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dde/10607458/f695cbe59a42/jcm-12-06479-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dde/10607458/b1799d2e4ab1/jcm-12-06479-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dde/10607458/0af239ec7881/jcm-12-06479-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dde/10607458/f149c7fe52c6/jcm-12-06479-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dde/10607458/f695cbe59a42/jcm-12-06479-g004.jpg

相似文献

[1]
Design and Usability Study of a Point of Care mHealth App for Early Dry Eye Screening and Detection.

J Clin Med. 2023-10-12

[2]
Diagnostic Ability of a Smartphone App for Dry Eye Disease: Protocol for a Multicenter, Open-Label, Prospective, and Cross-sectional Study.

JMIR Res Protoc. 2023-3-13

[3]
DryEyeRhythm: A reliable and valid smartphone application for the diagnosis assistance of dry eye.

Ocul Surf. 2022-7

[4]
Spontaneous Eye Blink Patterns in Dry Eye: Clinical Correlations.

Invest Ophthalmol Vis Sci. 2018-10-1

[5]
Clinical utility of maximum blink interval measured by smartphone application DryEyeRhythm to support dry eye disease diagnosis.

Sci Rep. 2023-8-21

[6]
Assessing the Risk Factors For Diagnosed Symptomatic Dry Eye Using a Smartphone App: Cross-sectional Study.

JMIR Mhealth Uhealth. 2022-6-22

[7]
Comparison of upper eyelid pressure and ocular surface parameters in dry eye disease and benign essential Blepharospasm: A cross-sectional study.

Cont Lens Anterior Eye. 2024-12

[8]
[Detection of the spontaneous blinking pattern of dry eye patients using the machine learning method].

Zhonghua Yan Ke Za Zhi. 2022-2-11

[9]
Impact of Incomplete Blinking Analyzed Using a Deep Learning Model With the Keratograph 5M in Dry Eye Disease.

Transl Vis Sci Technol. 2022-3-2

[10]
Blink Test enhances ability to screen for dry eye disease.

Cont Lens Anterior Eye. 2018-6-27

本文引用的文献

[1]
Clinical utility of maximum blink interval measured by smartphone application DryEyeRhythm to support dry eye disease diagnosis.

Sci Rep. 2023-8-21

[2]
Diagnostic Ability of a Smartphone App for Dry Eye Disease: Protocol for a Multicenter, Open-Label, Prospective, and Cross-sectional Study.

JMIR Res Protoc. 2023-3-13

[3]
Blinking and normal ocular surface in school-aged children and the effects of age and screen time.

Br J Ophthalmol. 2023-11

[4]
Identified risk factors for dry eye syndrome: A systematic review and meta-analysis.

PLoS One. 2022

[5]
Changing Medical Paradigm on Inflammatory Eye Disease: Technology and Its Implications for P4 Medicine.

J Clin Med. 2022-5-24

[6]
DryEyeRhythm: A reliable and valid smartphone application for the diagnosis assistance of dry eye.

Ocul Surf. 2022-7

[7]
Detection of signs of disease in external photographs of the eyes via deep learning.

Nat Biomed Eng. 2022-12

[8]
Dry Eye Disease: An Update in 2022.

JAMA. 2022-2-1

[9]
Smartphone-based digital phenotyping for dry eye toward P4 medicine: a crowdsourced cross-sectional study.

NPJ Digit Med. 2021-12-20

[10]
Artificial intelligence in dry eye disease.

Ocul Surf. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索