Suppr超能文献

小梁网运动控制远端瓣膜和腔室:青光眼新的药物和手术治疗靶点

Trabecular Meshwork Movement Controls Distal Valves and Chambers: New Glaucoma Medical and Surgical Targets.

作者信息

Johnstone Murray, Xin Chen, Martin Elizabeth, Wang Ruikang

机构信息

Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA.

Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing 100730, China.

出版信息

J Clin Med. 2023 Oct 18;12(20):6599. doi: 10.3390/jcm12206599.

Abstract

Herein, we provide evidence that human regulation of aqueous outflow is by a pump-conduit system similar to that of the lymphatics. Direct observation documents pulsatile aqueous flow into Schlemm's canal and from the canal into collector channels, intrascleral channels, aqueous veins, and episcleral veins. Pulsatile flow in vessels requires a driving force, a chamber with mobile walls and valves. We demonstrate that the trabecular meshwork acts as a deformable, mobile wall of a chamber: Schlemm's canal. A tight linkage between the driving force of intraocular pressure and meshwork deformation causes tissue responses in milliseconds. The link provides a sensory-motor baroreceptor-like function, providing maintenance of a homeostatic setpoint. The ocular pulse causes meshwork motion oscillations around the setpoint. We document valves entering and exiting the canal using real-time direct observation with a microscope and multiple additional modalities. Our laboratory-based high-resolution SD-OCT platform quantifies valve lumen opening and closing within milliseconds synchronously with meshwork motion; meshwork tissue stiffens, and movement slows in glaucoma tissue. Our novel PhS-OCT system measures nanometer-level motion synchronous with the ocular pulse in human subjects. Movement decreases in glaucoma patients. Our model is robust because it anchors laboratory studies to direct observation of physical reality in humans with glaucoma.

摘要

在此,我们提供证据表明,人类房水流出的调节是通过一种类似于淋巴管的泵 - 管道系统进行的。直接观察记录了搏动性房水流入施莱姆管,并从该管流入集液管、巩膜内通道、房水静脉和巩膜上静脉。血管中的搏动性血流需要驱动力、具有可移动壁和瓣膜的腔室。我们证明小梁网充当了一个腔室(施莱姆管)的可变形、可移动壁。眼内压驱动力与小梁网变形之间的紧密联系会在数毫秒内引发组织反应。这种联系提供了一种类似感觉运动压力感受器的功能,维持内稳态设定点。眼脉搏导致小梁网运动围绕设定点振荡。我们使用显微镜和多种其他方式进行实时直接观察,记录瓣膜进出管道的情况。我们基于实验室的高分辨率SD - OCT平台可在数毫秒内同步量化瓣膜腔的开闭与小梁网运动;在青光眼组织中,小梁网组织变硬,运动减缓。我们新颖的相移光学相干断层扫描(PhS - OCT)系统可测量人类受试者中与眼脉搏同步的纳米级运动。青光眼患者的运动减少。我们的模型很强大,因为它将实验室研究与对青光眼患者物理现实的直接观察联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b7b/10607137/959b4b96a15a/jcm-12-06599-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验