Suppr超能文献

基于深度学习算法的腰椎侧位X线片腹主动脉钙化的自动分割与量化

Automatic Segmentation and Quantification of Abdominal Aortic Calcification in Lateral Lumbar Radiographs Based on Deep-Learning-Based Algorithms.

作者信息

Wang Kexin, Wang Xiaoying, Xi Zuqiang, Li Jialun, Zhang Xiaodong, Wang Rui

机构信息

Department of Radiology, Peking University First Hospital, Beijing 100034, China.

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

出版信息

Bioengineering (Basel). 2023 Oct 5;10(10):1164. doi: 10.3390/bioengineering10101164.

Abstract

To investigate the performance of deep-learning-based algorithms for the automatic segmentation and quantification of abdominal aortic calcification (AAC) in lateral lumbar radiographs, we retrospectively collected 1359 consecutive lateral lumbar radiographs. The data were randomly divided into model development and hold-out test datasets. The model development dataset was used to develop U-shaped fully convolutional network (U-Net) models to segment the landmarks of vertebrae T12-L5, the aorta, and anterior and posterior aortic calcifications. The AAC lengths were calculated, resulting in an automatic Kauppila score output. The vertebral levels, AAC scores, and AAC severity were obtained from clinical reports and analyzed by an experienced expert (reference standard) and the model. Compared with the reference standard, the U-Net model demonstrated a good performance in predicting the total AAC score in the hold-out test dataset, with a correlation coefficient of 0.97 ( <0.001). The overall accuracy for the AAC severity was 0.77 for the model and 0.74 for the clinical report. Additionally, the Kendall coefficient of concordance of the total AAC score prediction was 0.89 between the model-predicted score and the reference standard, and 0.88 between the structured clinical report and the reference standard. In conclusion, the U-Net-based deep learning approach demonstrated a relatively high model performance in automatically segmenting and quantifying ACC.

摘要

为了研究基于深度学习的算法在腰椎侧位X线片中对腹主动脉钙化(AAC)进行自动分割和量化的性能,我们回顾性收集了1359例连续的腰椎侧位X线片。数据被随机分为模型开发数据集和保留测试数据集。模型开发数据集用于开发U型全卷积网络(U-Net)模型,以分割T12-L5椎体、主动脉以及主动脉前后钙化的标志点。计算AAC长度,得出自动的考皮拉评分输出。从临床报告中获取椎体水平、AAC评分和AAC严重程度,并由一位经验丰富的专家(参考标准)和模型进行分析。与参考标准相比,U-Net模型在保留测试数据集中预测总AAC评分方面表现良好,相关系数为0.97(<0.001)。模型对AAC严重程度的总体准确率为0.77,临床报告为0.74。此外,模型预测评分与参考标准之间总AAC评分预测的肯德尔和谐系数为0.89,结构化临床报告与参考标准之间为0.88。总之,基于U-Net的深度学习方法在自动分割和量化ACC方面表现出相对较高的模型性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f43d/10604574/3ad23535c764/bioengineering-10-01164-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验