Suppr超能文献

基于机器学习的 DXA 椎体骨折评估图像腹主动脉钙化自动评分:一项初步研究。

Machine learning for automated abdominal aortic calcification scoring of DXA vertebral fracture assessment images: A pilot study.

机构信息

University of Manitoba, Winnipeg, Canada.

Park Nicollet Clinic and HealthPartners Institute, Bloomington, MN, USA; University of Minnesota, Minneapolis, MN, USA.

出版信息

Bone. 2021 Jul;148:115943. doi: 10.1016/j.bone.2021.115943. Epub 2021 Apr 6.

Abstract

BACKGROUND

Abdominal aortic calcification (AAC) identified on dual-energy x-ray absorptiometry (DXA) vertebral fracture assessment (VFA) lateral spine images is predictive of cardiovascular outcomes, but is time-consuming to perform manually. Whether this procedure can be automated using convolutional neural networks (CNNs), a class of machine learning algorithms used for image processing, has not been widely investigated.

METHODS

Using the Province of Manitoba Bone Density Program DXA database, we selected a random sample of 1100 VFA images from individuals qualifying for VFA as part of their osteoporosis assessment. For each scan, AAC was manually scored using the 24-point semi-quantitative scale and categorized as low (score < 2), moderate (score 2 to <6), or high (score ≥ 6). An ensemble consisting of two CNNs was developed, by training and evaluating separately on single-energy and dual-energy images. AAC prediction was performed using the mean AAC score of the two models.

RESULTS

Mean (SD) age of the cohort was 75.5 (6.7) years, 95.5% were female. Training (N = 770, 70%), validation (N = 110, 10%) and test sets (N = 220, 20%) were well-balanced with respect to baseline characteristics and AAC scores. For the test set, the Pearson correlation between the CNN-predicted and human-labelled scores was 0.93 with intraclass correlation coefficient for absolute agreement 0.91 (95% CI 0.89-0.93). Kappa for AAC category agreement (prevalence- and bias-adjusted, ordinal scale) was 0.71 (95% CI 0.65-0.78). There was complete separation of the low and high categories, without any low AAC score scans predicted to be high and vice versa.

CONCLUSIONS

CNNs are capable of detecting AAC in VFA images, with high correlation between the human and predicted scores. These preliminary results suggest CNNs are a promising method for automatically detecting and quantifying AAC.

摘要

背景

在双能 X 射线吸收法(DXA)椎体骨折评估(VFA)的侧位脊柱图像上识别出的腹主动脉钙化(AAC)可预测心血管结局,但手动进行此操作非常耗时。卷积神经网络(CNN)是否可以自动执行此过程,CNN 是一种用于图像处理的机器学习算法,尚未得到广泛研究。

方法

使用马尼托巴省骨密度计划 DXA 数据库,我们从符合 VFA 评估条件的个体中随机选择了 1100 个 VFA 图像作为样本。对于每个扫描,使用 24 分半定量评分系统手动评分 AAC,并将其分为低(评分<2)、中(评分 2 至<6)或高(评分≥6)。通过分别在单能和双能图像上进行训练和评估,开发了一个由两个 CNN 组成的集成。AAC 预测是使用两个模型的平均 AAC 得分进行的。

结果

队列的平均(SD)年龄为 75.5(6.7)岁,95.5%为女性。在基线特征和 AAC 评分方面,训练集(N=770,70%)、验证集(N=110,10%)和测试集(N=220,20%)的平衡良好。对于测试集,CNN 预测得分与人工标记得分之间的 Pearson 相关系数为 0.93,绝对一致性的组内相关系数为 0.91(95%CI 0.89-0.93)。基于分类(调整流行率和偏倚,有序量表)的 AAC 类别一致性的 Kappa 值为 0.71(95%CI 0.65-0.78)。低和高类别完全分开,没有任何低 AAC 评分的扫描被预测为高,反之亦然。

结论

CNN 能够在 VFA 图像中检测 AAC,人工和预测得分之间具有高度相关性。这些初步结果表明,CNN 是一种自动检测和量化 AAC 的有前途的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验