Suppr超能文献

基于X射线图像的人工智能驱动的全矢状位脊柱分割及自动分析用于脊柱骨盆参数评估

AI-Driven Segmentation and Automated Analysis of the Whole Sagittal Spine from X-ray Images for Spinopelvic Parameter Evaluation.

作者信息

Song Sang-Youn, Seo Min-Seok, Kim Chang-Won, Kim Yun-Heung, Yoo Byeong-Cheol, Choi Hyun-Ju, Seo Sung-Hyo, Kang Sung-Wook, Song Myung-Geun, Nam Dae-Cheol, Kim Dong-Hee

机构信息

Department of Orthopaedic Surgery, Institute of Medical Science, Gyeongsang National University Hospital and Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea.

Deepnoid. Inc., Seoul 08376, Republic of Korea.

出版信息

Bioengineering (Basel). 2023 Oct 20;10(10):1229. doi: 10.3390/bioengineering10101229.

Abstract

Spinal-pelvic parameters are utilized in orthopedics for assessing patients' curvature and body alignment in diagnosing, treating, and planning surgeries for spinal and pelvic disorders. Segmenting and autodetecting the whole spine from lateral radiographs is challenging. Recent efforts have employed deep learning techniques to automate the segmentation and analysis of whole-spine lateral radiographs. This study aims to develop an artificial intelligence (AI)-based deep learning approach for the automated segmentation, alignment, and measurement of spinal-pelvic parameters through whole-spine lateral radiographs. We conducted the study on 932 annotated images from various spinal pathologies. Using a deep learning (DL) model, anatomical landmarks of the cervical, thoracic, lumbar vertebrae, sacrum, and femoral head were automatically distinguished. The algorithm was designed to measure 13 radiographic alignment and spinal-pelvic parameters from the whole-spine lateral radiographs. Training data comprised 748 digital radiographic (DR) X-ray images, while 90 X-ray images were used for validation. Another set of 90 X-ray images served as the test set. Inter-rater reliability between orthopedic spine specialists, orthopedic residents, and the DL model was evaluated using the intraclass correlation coefficient (ICC). The segmentation accuracy for anatomical landmarks was within an acceptable range (median error: 1.7-4.1 mm). The inter-rater reliability between the proposed DL model and individual experts was fair to good for measurements of spinal curvature characteristics (all ICC values > 0.62). The developed DL model in this study demonstrated good levels of inter-rater reliability for predicting anatomical landmark positions and measuring radiographic alignment and spinal-pelvic parameters. Automated segmentation and analysis of whole-spine lateral radiographs using deep learning offers a promising tool to enhance accuracy and efficiency in orthopedic diagnostics and treatments.

摘要

脊柱骨盆参数在骨科中用于评估患者的脊柱弯曲度和身体对线情况,以诊断、治疗脊柱和骨盆疾病并制定手术计划。从侧位X线片中分割并自动检测整个脊柱具有挑战性。最近的研究采用深度学习技术来实现全脊柱侧位X线片的自动分割和分析。本研究旨在开发一种基于人工智能(AI)的深度学习方法,通过全脊柱侧位X线片对脊柱骨盆参数进行自动分割、对线和测量。我们对932张来自各种脊柱疾病的标注图像进行了研究。使用深度学习(DL)模型,自动区分颈椎、胸椎、腰椎、骶骨和股骨头的解剖标志。该算法旨在从全脊柱侧位X线片中测量13个影像学对线和脊柱骨盆参数。训练数据包括748张数字放射摄影(DR)X线图像,90张X线图像用于验证。另一组90张X线图像用作测试集。使用组内相关系数(ICC)评估骨科脊柱专家、骨科住院医师和DL模型之间的评分者间信度。解剖标志的分割精度在可接受范围内(中位误差:1.7 - 4.1毫米)。对于脊柱弯曲特征的测量,所提出的DL模型与个体专家之间的评分者间信度为中等至良好(所有ICC值>0.62)。本研究中开发的DL模型在预测解剖标志位置以及测量影像学对线和脊柱骨盆参数方面表现出良好的评分者间信度。使用深度学习对全脊柱侧位X线片进行自动分割和分析,为提高骨科诊断和治疗的准确性和效率提供了一种有前景的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2575/10604000/e9132e43085e/bioengineering-10-01229-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验