Suppr超能文献

鉴别真假肉桂:探索多种鉴别方法

Differentiating True and False Cinnamon: Exploring Multiple Approaches for Discrimination.

作者信息

Feltes Giovana, Ballen Sandra C, Steffens Juliana, Paroul Natalia, Steffens Clarice

机构信息

Department of Food Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões, Av. Sete de Setembro, 1621, Erechim 99709-910, Brazil.

出版信息

Micromachines (Basel). 2023 Sep 23;14(10):1819. doi: 10.3390/mi14101819.

Abstract

This study presents a comprehensive literature review that investigates the distinctions between true and false cinnamon. Given the intricate compositions of essential oils (EOs), various discrimination approaches were explored to ensure quality, safety, and authenticity, thereby establishing consumer confidence. Through the utilization of physical-chemical and instrumental analyses, the purity of EOs was evaluated via qualitative and quantitative assessments, enabling the identification of constituents or compounds within the oils. Consequently, a diverse array of techniques has been documented, encompassing organoleptic, physical, chemical, and instrumental methodologies, such as spectroscopic and chromatographic methods. Electronic noses (e-noses) exhibit significant potential for identifying cinnamon adulteration, presenting a rapid, non-destructive, and cost-effective approach. Leveraging their capability to detect and analyze volatile organic compound (VOC) profiles, e-noses can contribute to ensuring authenticity and quality in the food and fragrance industries. Continued research and development efforts in this domain will assuredly augment the capacities of this promising avenue, which is the utilization of Artificial Intelligence (AI) and Machine Learning (ML) algorithms in conjunction with spectroscopic data to combat cinnamon adulteration.

摘要

本研究进行了一项全面的文献综述,调查了真假肉桂之间的区别。鉴于精油(EOs)成分复杂,探索了各种鉴别方法以确保质量、安全和真实性,从而建立消费者信心。通过物理化学和仪器分析,通过定性和定量评估来评估精油的纯度,从而能够识别油中的成分或化合物。因此,已记录了各种各样的技术,包括感官、物理、化学和仪器方法,如光谱和色谱方法。电子鼻在识别肉桂掺假方面具有巨大潜力,提供了一种快速、无损且经济高效的方法。利用其检测和分析挥发性有机化合物(VOC)谱的能力,电子鼻有助于确保食品和香料行业的真实性和质量。在这一领域持续的研发工作必将增强这一有前景途径(即将人工智能(AI)和机器学习(ML)算法与光谱数据结合起来打击肉桂掺假)的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f45/10609063/793e5e1fd5ae/micromachines-14-01819-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验