Suppr超能文献

18F-FDG PET/MRI联合影像组学及机器学习分析原发性乳腺癌以术前预测腋窝淋巴结状态

Simultaneous 18F-FDG PET/MRI Radiomics and Machine Learning Analysis of the Primary Breast Tumor for the Preoperative Prediction of Axillary Lymph Node Status in Breast Cancer.

作者信息

Romeo Valeria, Kapetas Panagiotis, Clauser Paola, Rasul Sazan, Cuocolo Renato, Caruso Martina, Helbich Thomas H, Baltzer Pascal A T, Pinker Katja

机构信息

Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80138 Naples, Italy.

Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria.

出版信息

Cancers (Basel). 2023 Oct 21;15(20):5088. doi: 10.3390/cancers15205088.

Abstract

In this prospective study, 117 female patients (mean age = 53 years) with 127 histologically proven breast cancer lesions (lymph node (LN) positive = 85, LN negative = 42) underwent simultaneous 18F-FDG PET/MRI of the breast. Quantitative parameters were calculated from dynamic contrast-enhanced (DCE) imaging (tumor Mean Transit Time, Volume Distribution, Plasma Flow), diffusion-weighted imaging (DWI) (tumor ADCmean), and PET (tumor SUVmax, mean and minimum, SUVmean of ipsilateral breast parenchyma). Manual whole-lesion segmentation was also performed on DCE, T2-weighted, DWI, and PET images, and radiomic features were extracted. The dataset was divided into a training (70%) and a test set (30%). Multi-step feature selection was performed, and a support vector machine classifier was trained and tested for predicting axillary LN status. 13 radiomic features from DCE, DWI, T2-weighted, and PET images were selected for model building. The classifier obtained an accuracy of 79.8 (AUC = 0.798) in the training set and 78.6% (AUC = 0.839), with sensitivity and specificity of 67.9% and 100%, respectively, in the test set. A machine learning-based radiomics model comprising 18F-FDG PET/MRI radiomic features extracted from the primary breast cancer lesions allows high accuracy in non-invasive identification of axillary LN metastasis.

摘要

在这项前瞻性研究中,117例女性患者(平均年龄 = 53岁),其127个经组织学证实的乳腺癌病灶(淋巴结(LN)阳性 = 85个,LN阴性 = 42个)接受了乳腺18F-FDG PET/MRI同步检查。从动态对比增强(DCE)成像(肿瘤平均通过时间、容积分布、血浆流量)、扩散加权成像(DWI)(肿瘤ADCmean)和PET(肿瘤SUVmax、平均值和最小值、患侧乳腺实质的SUVmean)计算定量参数。还对DCE、T2加权、DWI和PET图像进行了手动全病灶分割,并提取了影像组学特征。数据集被分为训练集(70%)和测试集(30%)。进行了多步骤特征选择,并训练和测试了支持向量机分类器以预测腋窝LN状态。从DCE、DWI、T2加权和PET图像中选择了13个影像组学特征用于模型构建。该分类器在训练集中的准确率为79.8(AUC = 0.798),在测试集中的准确率为78.6%(AUC = 0.839),敏感性和特异性分别为67.9%和100%。基于机器学习的影像组学模型,包括从原发性乳腺癌病灶中提取的18F-FDG PET/MRI影像组学特征,在无创识别腋窝LN转移方面具有较高的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d41/10604950/c55720de37de/cancers-15-05088-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验