Centre International de Recherche en Infectiologie (CIRI), 69007 Lyon, France.
Institut National de la Santé et de la Recherche Médicale (INSERM), Unité U1111, 69007 Lyon, France.
Int J Mol Sci. 2023 Oct 17;24(20):15274. doi: 10.3390/ijms242015274.
Zinc, an essential trace element that serves as a cofactor for numerous cellular and viral proteins, plays a central role in the dynamics of HIV-1 infection. Among the viral proteins, the nucleocapsid NCp7, which contains two zinc finger motifs, is abundantly present viral particles and plays a crucial role in coating HIV-1 genomic RNA, thus concentrating zinc within virions. In this study, we investigated whether HIV-1 virus production impacts cellular zinc homeostasis and whether isotopic fractionation occurs between the growth medium, the producing cells, and the viral particles. We found that HIV-1 captures a significant proportion of cellular zinc in the neo-produced particles. Furthermore, as cells grow, they accumulate lighter zinc isotopes from the medium, resulting in a concentration of heavier isotopes in the media, and the viruses exhibit a similar isotopic fractionation to the producing cells. Moreover, we generated HIV-1 particles in HEK293T cells enriched with each of the five zinc isotopes to assess the potential effects on the structure and infectivity of the viruses. As no strong difference was observed between the HIV-1 particles produced in the various conditions, we have demonstrated that enriched isotopes can be accurately used in future studies to trace the fate of zinc in cells infected by HIV-1 particles. Comprehending the mechanisms underlying zinc absorption by HIV-1 viral particles offers the potential to provide insights for developing future treatments aimed at addressing this specific facet of the virus's life cycle.
锌是一种必需的微量元素,作为许多细胞和病毒蛋白的辅助因子,在 HIV-1 感染的动态中起着核心作用。在病毒蛋白中,核衣壳 NCp7 含有两个锌指基序,大量存在于病毒粒子中,在 HIV-1 基因组 RNA 的涂层中起着关键作用,从而使锌浓缩在病毒粒子内。在这项研究中,我们研究了 HIV-1 病毒的产生是否会影响细胞内的锌稳态,以及生长培养基、产生细胞和病毒粒子之间是否存在同位素分馏。我们发现 HIV-1 在新产生的粒子中捕获了大量的细胞内锌。此外,随着细胞的生长,它们会从培养基中积累更轻的锌同位素,导致培养基中更重的同位素浓度增加,而病毒表现出与产生细胞相似的同位素分馏。此外,我们在富含五种锌同位素的 HEK293T 细胞中生成 HIV-1 颗粒,以评估它们对病毒结构和感染性的潜在影响。由于在不同条件下产生的 HIV-1 颗粒之间没有观察到明显差异,我们证明了富集的同位素可以在未来的研究中准确地用于追踪感染 HIV-1 颗粒的细胞中锌的命运。了解 HIV-1 病毒颗粒吸收锌的机制为开发针对病毒生命周期这一特定方面的未来治疗方法提供了潜在的见解。