Suppr超能文献

基于多尺度威布尔散布熵的三相异步电动机故障诊断研究

Research on Three-Phase Asynchronous Motor Fault Diagnosis Based on Multiscale Weibull Dispersion Entropy.

作者信息

Xie Fengyun, Sun Enguang, Zhou Shengtong, Shang Jiandong, Wang Yang, Fan Qiuyang

机构信息

School of Mechanical Electrical and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China.

State Key Laboratory of Performance Monitoring Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China.

出版信息

Entropy (Basel). 2023 Oct 13;25(10):1446. doi: 10.3390/e25101446.

Abstract

Three-phase asynchronous motors have a wide range of applications in the machinery industry and fault diagnosis aids in the healthy operation of a motor. In order to improve the accuracy and generalization of fault diagnosis in three-phase asynchronous motors, this paper proposes a three-phase asynchronous motor fault diagnosis method based on the combination of multiscale Weibull dispersive entropy (WB-MDE) and particle swarm optimization-support vector machine (PSO-SVM). Firstly, the Weibull distribution (WB) is used to linearize and smooth the vibration signals to obtain sharper information about the motor state. Secondly, the quantitative features of the regularity and orderliness of a given sequence are extracted using multiscale dispersion entropy (MDE). Then, a support vector machine (SVM) is used to construct a classifier, the parameters are optimized via the particle swarm optimization (PSO) algorithm, and the extracted feature vectors are fed into the optimized SVM model for classification and recognition. Finally, the accuracy and generalization of the model proposed in this paper are tested by adding raw data with Gaussian white noise with different signal-to-noise ratios and the CHIST-ERA SOON public dataset. This paper builds a three-phase asynchronous motor vibration signal experimental platform, through a piezoelectric acceleration sensor to discern the four states of the motor data, to verify the effectiveness of the proposed method. The accuracy of the collected data using the WB-MDE method proposed in this paper for feature extraction and the extracted features using the optimization of the PSO-SVM method for fault classification and identification is 100%. Additionally, the proposed model is tested for noise resistance and generalization. Finally, the superiority of the present method is verified through experiments as well as noise immunity and generalization tests.

摘要

三相异步电动机在机械工业中有着广泛的应用,故障诊断有助于电动机的健康运行。为了提高三相异步电动机故障诊断的准确性和泛化能力,本文提出了一种基于多尺度威布尔分散熵(WB-MDE)和粒子群优化支持向量机(PSO-SVM)相结合的三相异步电动机故障诊断方法。首先,利用威布尔分布(WB)对振动信号进行线性化和平滑处理,以获得关于电动机状态更清晰的信息。其次,使用多尺度分散熵(MDE)提取给定序列的规律性和有序性的定量特征。然后,使用支持向量机(SVM)构建分类器,通过粒子群优化(PSO)算法对参数进行优化,并将提取的特征向量输入到优化后的SVM模型中进行分类识别。最后,通过添加具有不同信噪比的高斯白噪声的原始数据和CHIST-ERA SOON公共数据集,对本文提出的模型的准确性和泛化能力进行测试。本文搭建了三相异步电动机振动信号实验平台,通过压电加速度传感器识别电动机数据的四种状态,以验证所提方法的有效性。使用本文提出的WB-MDE方法进行特征提取以及使用PSO-SVM方法优化后进行故障分类识别所采集数据的准确率为100%。此外,对所提模型进行了抗噪声和泛化测试。最后,通过实验以及抗噪声和泛化测试验证了本方法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aed/10606012/b4b521286191/entropy-25-01446-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验