Suppr超能文献

从新视角看脑电图:用于参数化t-SNE的卷积神经网络编码器

Get a New Perspective on EEG: Convolutional Neural Network Encoders for Parametric t-SNE.

作者信息

Svantesson Mats, Olausson Håkan, Eklund Anders, Thordstein Magnus

机构信息

Department of Clinical Neurophysiology, University Hospital of Linköping, 58185 Linköping, Sweden.

Center for Social and Affective Neuroscience, Linköping University, 58183 Linköping, Sweden.

出版信息

Brain Sci. 2023 Mar 7;13(3):453. doi: 10.3390/brainsci13030453.

Abstract

t-distributed stochastic neighbor embedding (t-SNE) is a method for reducing high-dimensional data to a low-dimensional representation, and is mostly used for visualizing data. In parametric t-SNE, a neural network learns to reproduce this mapping. When used for EEG analysis, the data are usually first transformed into a set of features, but it is not known which features are optimal. The principle of t-SNE was used to train convolutional neural network (CNN) encoders to learn to produce both a high- and a low-dimensional representation, eliminating the need for feature engineering. To evaluate the method, the Temple University EEG Corpus was used to create three datasets with distinct EEG characters: (1) wakefulness and sleep; (2) interictal epileptiform discharges; and (3) seizure activity. The CNN encoders produced low-dimensional representations of the datasets with a structure that conformed well to the EEG characters and generalized to new data. Compared to parametric t-SNE for either a short-time Fourier transform or wavelet representation of the datasets, the developed CNN encoders performed equally well in separating categories, as assessed by support vector machines. The CNN encoders generally produced a higher degree of clustering, both visually and in the number of clusters detected by k-means clustering. The developed principle is promising and could be further developed to create general tools for exploring relations in EEG data.

摘要

t分布随机邻域嵌入(t-SNE)是一种将高维数据降维为低维表示的方法,主要用于数据可视化。在参数化t-SNE中,神经网络学习重现这种映射。当用于脑电图(EEG)分析时,数据通常首先被转换为一组特征,但尚不清楚哪些特征是最优的。利用t-SNE的原理训练卷积神经网络(CNN)编码器,以学习生成高维和低维表示,从而无需进行特征工程。为了评估该方法,使用天普大学EEG语料库创建了三个具有不同EEG特征的数据集:(1)清醒和睡眠;(2)发作间期癫痫样放电;(3)癫痫发作活动。CNN编码器生成了数据集的低维表示,其结构与EEG特征非常吻合,并能推广到新数据。与用于数据集的短时傅里叶变换或小波表示的参数化t-SNE相比,通过支持向量机评估,所开发的CNN编码器在类别分离方面表现同样出色。CNN编码器通常在视觉上以及通过k均值聚类检测到的聚类数量方面都产生了更高程度的聚类。所开发的原理很有前景,可以进一步开发以创建用于探索EEG数据关系的通用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5c/10046040/aeb205eec0e1/brainsci-13-00453-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验