Mortazavi Bohayra
Department of Mathematics and Physics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover, Germany.
Materials (Basel). 2023 Oct 11;16(20):6642. doi: 10.3390/ma16206642.
In a recent experimental accomplishment, a two-dimensional holey graphyne semiconducting nanosheet with unusual annulative π-extension has been fabricated. Motivated by the aforementioned advance, herein we theoretically explore the electronic, dynamical stability, thermal and mechanical properties of carbon (C) and boron nitride (BN) holey graphyne (HGY) monolayers. Density functional theory (DFT) results reveal that while the C-HGY monolayer shows an appealing direct gap of 1.00 (0.50) eV according to the HSE06(PBE) functional, the BNHGY monolayer is an indirect insulator with large band gaps of 5.58 (4.20) eV. Furthermore, the elastic modulus (ultimate tensile strength) values of the single-layer C- and BN-HGY are predicted to be 127(41) and 105(29) GPa, respectively. The phononic and thermal properties are further investigated using machine learning interatomic potentials (MLIPs). The predicted phonon spectra confirm the dynamical stability of these novel nanoporous lattices. The room temperature lattice thermal conductivity of the considered monolayers is estimated to be very close, around 14.0 ± 1.5 W/mK. At room temperature, the C-HGY and BN-HGY monolayers are predicted to yield an ultrahigh negative thermal expansion coefficient, by more than one order of magnitude larger than that of the graphene. The presented results reveal decent stability, anomalously low elastic modulus to tensile strength ratio, ultrahigh negative thermal expansion coefficients and moderate lattice thermal conductivity of the semiconducting C-HGY and insulating BN-HGY monolayers.
在最近的一项实验成果中,制备出了一种具有不寻常累积π-延伸的二维多孔石墨炔半导体纳米片。受上述进展的启发,在此我们从理论上探索了碳(C)和氮化硼(BN)多孔石墨炔(HGY)单层的电子、动力学稳定性、热学和力学性质。密度泛函理论(DFT)结果表明,根据HSE06(PBE)泛函,C-HGY单层显示出1.00(0.50)eV的诱人直接带隙,而BN-HGY单层是一种间接绝缘体,具有5.58(4.20)eV的大带隙。此外,预测单层C-和BN-HGY的弹性模量(极限拉伸强度)值分别为127(41)和105(29)GPa。使用机器学习原子间势(MLIPs)进一步研究了声子和热学性质。预测的声子谱证实了这些新型纳米多孔晶格的动力学稳定性。所考虑的单层在室温下的晶格热导率估计非常接近,约为14.0±1.5W/mK。在室温下,预测C-HGY和BN-HGY单层将产生超高的负热膨胀系数,比石墨烯的负热膨胀系数大一个多数量级。所呈现的结果揭示了半导体C-HGY和绝缘BN-HGY单层具有良好的稳定性、异常低的弹性模量与拉伸强度比、超高的负热膨胀系数和适中的晶格热导率。