Department of Engineering, Unit of Computational Systems and Bioinformatics, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.
Department of Engineering, Unit of Electronics for Sensor Systems, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.
Sensors (Basel). 2023 Oct 10;23(20):8376. doi: 10.3390/s23208376.
Facial expression recognition (FER) poses a complex challenge due to diverse factors such as facial morphology variations, lighting conditions, and cultural nuances in emotion representation. To address these hurdles, specific FER algorithms leverage advanced data analysis for inferring emotional states from facial expressions. In this study, we introduce a universal validation methodology assessing any FER algorithm's performance through a web application where subjects respond to emotive images. We present the labelled data database, FeelPix, generated from facial landmark coordinates during FER algorithm validation. FeelPix is available to train and test generic FER algorithms, accurately identifying users' facial expressions. A testing algorithm classifies emotions based on FeelPix data, ensuring its reliability. Designed as a computationally lightweight solution, it finds applications in online systems. Our contribution improves facial expression recognition, enabling the identification and interpretation of emotions associated with facial expressions, offering profound insights into individuals' emotional reactions. This contribution has implications for healthcare, security, human-computer interaction, and entertainment.
面部表情识别(FER)由于面部形态变化、光照条件和情感表达的文化细微差别等多种因素而带来复杂的挑战。为了解决这些障碍,特定的 FER 算法利用先进的数据分析从面部表情推断情绪状态。在这项研究中,我们引入了一种通用的验证方法学,通过一个网络应用程序评估任何 FER 算法的性能,该应用程序允许用户对情感图像做出反应。我们提出了标注数据数据库 FeelPix,它是在 FER 算法验证过程中从面部地标坐标生成的。FeelPix 可用于训练和测试通用的 FER 算法,准确识别用户的面部表情。测试算法根据 FeelPix 数据对情绪进行分类,确保其可靠性。该算法设计为计算轻量级解决方案,可应用于在线系统。我们的贡献提高了面部表情识别,能够识别和解释与面部表情相关的情绪,深入了解个体的情绪反应。这一贡献对医疗保健、安全、人机交互和娱乐领域具有重要意义。