Suppr超能文献

开发一个通用的验证协议和一个开源的多情境面部表情识别数据库。

Development of a Universal Validation Protocol and an Open-Source Database for Multi-Contextual Facial Expression Recognition.

机构信息

Department of Engineering, Unit of Computational Systems and Bioinformatics, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.

Department of Engineering, Unit of Electronics for Sensor Systems, Università Campus Bio-Medico di Roma, 00128 Rome, Italy.

出版信息

Sensors (Basel). 2023 Oct 10;23(20):8376. doi: 10.3390/s23208376.

Abstract

Facial expression recognition (FER) poses a complex challenge due to diverse factors such as facial morphology variations, lighting conditions, and cultural nuances in emotion representation. To address these hurdles, specific FER algorithms leverage advanced data analysis for inferring emotional states from facial expressions. In this study, we introduce a universal validation methodology assessing any FER algorithm's performance through a web application where subjects respond to emotive images. We present the labelled data database, FeelPix, generated from facial landmark coordinates during FER algorithm validation. FeelPix is available to train and test generic FER algorithms, accurately identifying users' facial expressions. A testing algorithm classifies emotions based on FeelPix data, ensuring its reliability. Designed as a computationally lightweight solution, it finds applications in online systems. Our contribution improves facial expression recognition, enabling the identification and interpretation of emotions associated with facial expressions, offering profound insights into individuals' emotional reactions. This contribution has implications for healthcare, security, human-computer interaction, and entertainment.

摘要

面部表情识别(FER)由于面部形态变化、光照条件和情感表达的文化细微差别等多种因素而带来复杂的挑战。为了解决这些障碍,特定的 FER 算法利用先进的数据分析从面部表情推断情绪状态。在这项研究中,我们引入了一种通用的验证方法学,通过一个网络应用程序评估任何 FER 算法的性能,该应用程序允许用户对情感图像做出反应。我们提出了标注数据数据库 FeelPix,它是在 FER 算法验证过程中从面部地标坐标生成的。FeelPix 可用于训练和测试通用的 FER 算法,准确识别用户的面部表情。测试算法根据 FeelPix 数据对情绪进行分类,确保其可靠性。该算法设计为计算轻量级解决方案,可应用于在线系统。我们的贡献提高了面部表情识别,能够识别和解释与面部表情相关的情绪,深入了解个体的情绪反应。这一贡献对医疗保健、安全、人机交互和娱乐领域具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a09/10611000/9c95e2e535be/sensors-23-08376-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验