Suppr超能文献

基于交替方向乘子法(ADMM)对模型预测控制(MPC)进行滚动优化的自动驾驶车辆快速轨迹跟踪控制算法

Fast Trajectory Tracking Control Algorithm for Autonomous Vehicles Based on the Alternating Direction Multiplier Method (ADMM) to the Receding Optimization of Model Predictive Control (MPC).

作者信息

Dong Ding, Ye Hongtao, Luo Wenguang, Wen Jiayan, Huang Dan

机构信息

School of Automation, Guangxi University of Science and Technology, Liuzhou 545036, China.

Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China.

出版信息

Sensors (Basel). 2023 Oct 11;23(20):8391. doi: 10.3390/s23208391.

Abstract

In order to improve the real-time performance of the trajectory tracking of autonomous vehicles, this paper applies the alternating direction multiplier method (ADMM) to the receding optimization of model predictive control (MPC), which improves the computational speed of the algorithm. Based on the vehicle dynamics model, the output equation of the autonomous vehicle trajectory tracking control system is constructed, and the auxiliary variable and the dual variable are introduced. The quadratic programming problem transformed from the MPC and the vehicle dynamics constraints are rewritten into the solution of the ADMM form, and a decreasing penalty factor is used during the solution process. The simulation verification is carried out through the joint simulation platform of Simulink and Carsim. The results show that, compared with the active set method (ASM) and the interior point method (IPM), the algorithm proposed in this paper can not only improve the accuracy of trajectory tracking, but also exhibits good real-time performance in different prediction time domains and control time domains. When the prediction time domain increases, the calculation time shows no significant difference. This verifies the effectiveness of the ADMM in improving the real-time performance of MPC.

摘要

为提高自动驾驶车辆轨迹跟踪的实时性能,本文将交替方向乘子法(ADMM)应用于模型预测控制(MPC)的滚动优化,提高了算法的计算速度。基于车辆动力学模型,构建了自动驾驶车辆轨迹跟踪控制系统的输出方程,并引入了辅助变量和对偶变量。将由MPC和车辆动力学约束转化而来的二次规划问题改写为ADMM形式的解,并在求解过程中使用递减惩罚因子。通过Simulink和Carsim联合仿真平台进行了仿真验证。结果表明,与活动集方法(ASM)和内点法(IPM)相比,本文提出的算法不仅能提高轨迹跟踪精度,而且在不同预测时域和控制时域下均表现出良好的实时性能。当预测时域增加时,计算时间无显著差异。这验证了ADMM在提高MPC实时性能方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验