Department of Electrical and Computer Engineering, Democritus University of Thrace (DUTh), 67100 Xanthi, Greece.
Sensors (Basel). 2023 Oct 15;23(20):8476. doi: 10.3390/s23208476.
The flour milling industry-a vital component of global food production-is undergoing a transformative phase driven by the integration of smart devices and advanced technologies. This transition promises improved efficiency, quality and sustainability in flour production. The accurate estimation of protein, moisture and ash content in wheat grains and flour is of paramount importance due to their direct impact on product quality and compliance with industry standards. This paper explores the application of Near-Infrared (NIR) spectroscopy as a non-destructive, efficient and cost-effective method for measuring the aforementioned essential parameters in wheat and flour by investigating the effectiveness of a low-cost handle NIR spectrometer. Furthermore, a novel approach using Fuzzy Cognitive Maps (FCMs) is proposed to estimate the protein, moisture and ash content in grain seeds and flour, marking the first known application of FCMs in this context. Our study includes an experimental setup that assesses different types of wheat seeds and flour samples and evaluates three NIR pre-processing techniques to enhance the parameter estimation accuracy. The results indicate that low-cost NIR equipment can contribute to the estimation of the studied parameters.
面粉制造业——全球食品生产的重要组成部分——正在经历一场由智能设备和先进技术融合所驱动的变革。这一转变有望提高面粉生产的效率、质量和可持续性。由于蛋白质、水分和灰分含量直接影响产品质量和行业标准的合规性,因此准确估计小麦籽粒和面粉中的这些含量至关重要。本文探讨了近红外(NIR)光谱技术的应用,该技术通过研究低成本手持 NIR 光谱仪的有效性,作为一种非破坏性、高效且具有成本效益的方法来测量小麦和面粉中的上述基本参数。此外,还提出了一种使用模糊认知图(FCM)的新方法来估计籽粒和面粉中的蛋白质、水分和灰分含量,这标志着 FCM 在该领域的首次应用。我们的研究包括一个实验设置,评估了不同类型的小麦种子和面粉样本,并评估了三种 NIR 预处理技术,以提高参数估计的准确性。结果表明,低成本 NIR 设备可有助于估计所研究的参数。