Suppr超能文献

基于深度图卷积网络的滚动轴承智能复合故障诊断

Intelligent Compound Fault Diagnosis of Roller Bearings Based on Deep Graph Convolutional Network.

作者信息

Chen Caifeng, Yuan Yiping, Zhao Feiyang

机构信息

School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China.

出版信息

Sensors (Basel). 2023 Oct 16;23(20):8489. doi: 10.3390/s23208489.

Abstract

The high correlation between rolling bearing composite faults and single fault samples is prone to misclassification. Therefore, this paper proposes a rolling bearing composite fault diagnosis method based on a deep graph convolutional network. First, the acquired raw vibration signals are pre-processed and divided into sub-samples. Secondly, a number of sub-samples in different health states are constructed as graph-structured data, divided into a training set and a test set. Finally, the training set is used as input to a deep graph convolutional neural network (DGCN) model, which is trained to determine the optimal structure and parameters of the network. A test set verifies the feasibility and effectiveness of the network. The experimental result shows that the DGCN can effectively identify compound faults in rolling bearings, which provides a new approach for the identification of compound faults in bearings.

摘要

滚动轴承复合故障与单一故障样本之间的高相关性容易导致误分类。因此,本文提出了一种基于深度图卷积网络的滚动轴承复合故障诊断方法。首先,对采集到的原始振动信号进行预处理并划分为子样本。其次,将处于不同健康状态的多个子样本构建为图结构数据,分为训练集和测试集。最后,将训练集作为深度图卷积神经网络(DGCN)模型的输入,对该模型进行训练以确定网络的最优结构和参数。测试集验证了该网络的可行性和有效性。实验结果表明,DGCN能够有效识别滚动轴承中的复合故障,为轴承复合故障的识别提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb0b/10611344/d32482403aee/sensors-23-08489-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验