Suppr超能文献

基于高通量混合竞争试验的相对适合度的贝叶斯推断。

Bayesian inference of relative fitness on high-throughput pooled competition assays.

作者信息

Razo-Mejia Manuel, Mani Madhav, Petrov Dmitri

机构信息

Department of Biology, Stanford University.

NSF-Simons Center for Quantitative Biology, Northwestern University.

出版信息

bioRxiv. 2023 Oct 18:2023.10.14.562365. doi: 10.1101/2023.10.14.562365.

Abstract

The tracking of lineage frequencies via DNA barcode sequencing enables the quantification of microbial fitness. However, experimental noise coming from biotic and abiotic sources complicates the computation of a reliable inference. We present a Bayesian pipeline to infer relative microbial fitness from high-throughput lineage tracking assays. Our model accounts for multiple sources of noise and propagates uncertainties throughout all parameters in a systematic way. Furthermore, using modern variational inference methods based on automatic differentiation, we are able to scale the inference to a large number of unique barcodes. We extend this core model to analyze multi-environment assays, replicate experiments, and barcodes linked to genotypes. On simulations, our method recovers known parameters within posterior credible intervals. This work provides a generalizable Bayesian framework to analyze lineage tracking experiments. The accompanying open-source software library enables the adoption of principled statistical methods in experimental evolution.

摘要

通过DNA条形码测序追踪谱系频率能够对微生物适应性进行量化。然而,来自生物和非生物源的实验噪声使可靠推断的计算变得复杂。我们提出了一种贝叶斯方法,用于从高通量谱系追踪实验中推断相对微生物适应性。我们的模型考虑了多种噪声源,并以系统的方式在所有参数中传播不确定性。此外,使用基于自动微分的现代变分推理方法,我们能够将推理扩展到大量独特的条形码。我们扩展了这个核心模型,以分析多环境实验、重复实验以及与基因型相关的条形码。在模拟实验中,我们的方法在后验可信区间内恢复了已知参数。这项工作提供了一个可推广的贝叶斯框架来分析谱系追踪实验。随附的开源软件库使在实验进化中采用有原则的统计方法成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68e6/10614806/4ba98abdd296/nihpp-2023.10.14.562365v1-f0004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验