人脑记忆中对二进制声音序列压缩的脑成像证据。

Brain-imaging evidence for compression of binary sound sequences in human memory.

机构信息

Cognitive Neuroimaging Unit, Université Paris-Saclay, INSERM, CEA, CNRS, NeuroSpin center, Gif/Yvette, France.

Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.

出版信息

Elife. 2023 Nov 1;12:e84376. doi: 10.7554/eLife.84376.

Abstract

According to the language-of-thought hypothesis, regular sequences are compressed in human memory using recursive loops akin to a mental program that predicts future items. We tested this theory by probing memory for 16-item sequences made of two sounds. We recorded brain activity with functional MRI and magneto-encephalography (MEG) while participants listened to a hierarchy of sequences of variable complexity, whose minimal description required transition probabilities, chunking, or nested structures. Occasional deviant sounds probed the participants' knowledge of the sequence. We predicted that task difficulty and brain activity would be proportional to the complexity derived from the minimal description length in our formal language. Furthermore, activity should increase with complexity for learned sequences, and decrease with complexity for deviants. These predictions were upheld in both fMRI and MEG, indicating that sequence predictions are highly dependent on sequence structure and become weaker and delayed as complexity increases. The proposed language recruited bilateral superior temporal, precentral, anterior intraparietal, and cerebellar cortices. These regions overlapped extensively with a localizer for mathematical calculation, and much less with spoken or written language processing. We propose that these areas collectively encode regular sequences as repetitions with variations and their recursive composition into nested structures.

摘要

根据思维语言假说,人类记忆中会使用递归循环来压缩规则序列,就像一个心理程序一样,可以预测未来的项目。我们通过探测由两个声音组成的 16 个项目序列的记忆来检验这一理论。我们在参与者听不同复杂程度的序列层级结构时,用功能磁共振成像(fMRI)和脑磁图(MEG)记录大脑活动,这些序列的最小描述需要转换概率、组块或嵌套结构。偶尔出现的异常声音探测参与者对序列的了解程度。我们预测,任务难度和大脑活动将与我们形式语言中的最小描述长度所衍生的复杂性成正比。此外,对于学习过的序列,活动应该随着复杂性的增加而增加,对于偏差,活动应该随着复杂性的增加而减少。这些预测在 fMRI 和 MEG 中都得到了验证,这表明序列预测高度依赖于序列结构,随着复杂性的增加,预测的强度和及时性都会降低。所提出的语言会招募双侧颞上、中央前、前内顶叶和小脑皮质。这些区域与数学计算的定位器广泛重叠,而与口语或书面语言处理的重叠则要少得多。我们提出,这些区域共同将规则序列编码为具有变化的重复,并将其递归组合成嵌套结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1ea/10619979/d33d962175d8/elife-84376-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索